期刊文献+

TWO-STEP MODULUS-BASED SYNCHRONOUS MULTISPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS 被引量:11

TWO-STEP MODULUS-BASED SYNCHRONOUS MULTISPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS
原文传递
导出
摘要 To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation. To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.
作者 Lili Zhang
出处 《Journal of Computational Mathematics》 SCIE CSCD 2015年第1期100-112,共13页 计算数学(英文)
关键词 Linear complementarity problem Modulus-based method Matrix multisplit-ring Convergence. Linear complementarity problem, Modulus-based method, Matrix multisplit-ring, Convergence.
  • 相关文献

参考文献27

  • 1Z.-Z. Bai, The convergence of parallel iteration algorithms for linear complementarity problems, Comput. Math. Appl., 32 (1996), 1-17.
  • 2Z.-Z. Bai, On the convergence of the multisplitting methods for the linear complementarity prob- lem, SIAM J. Matrix Anal. Appl., 21 (1999), 67-78.
  • 3Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 1T (2010), 917-933.
  • 4Z.-Z. Bai and D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, Int. J. Comput. Math., 63 (1997), 309-326.
  • 5Z.-Z. Bai and D.J. Evans, Matrix multisplitting methods with applications to linear comple- mentarity problems: parallel synchronous and chaotic methods, Rgseaux et Systmes Rgpartis: Calculateurs Parallels, 13 (2001), 125-154.
  • 6Z.-Z. Bai, J.-C. Sun and D.-R. Wang, A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations, Comput. Math. Appl., 32 (1996), 51-76.
  • 7Z.-Z. Bai and L.-L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 20 (2013), 425-439.
  • 8Z.-Z. Bai and L.-L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numer. AlgoTthms, 62 (2013), 59-77.
  • 9A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
  • 10A. Brandt and C.W. Cryer, Multigrid algorithms for the solution of linear complementarity prob- lems arising from free boundary problems, SIAM J. Sci. Stat. Comput., 4 (1983), 655-684.

同被引文献53

  • 1Cottle R W, Pang J S,Stone R E. The linear complemen-tarity problem [ M ]. SanDiego : Academic, 1992.
  • 2Murty K G. Linear complementarity, linear and nonlinearprogramming[ M ]. Berlin : Heldermann Verlag, 1988.
  • 3Berman A, Plemmons R J. Nonnegative matrix in themathematical sciences [ M ]. Philadelphia : SIAM Publish-er, 1994.
  • 4Bai Z Z. On the convergence of the multisplitting methodsfor the linear complementarity problem [ J ]. SIAM Journalon Matrix Analysis and Applications, 1999,21 ( 1) : 67-78.
  • 5Frommer A,Szyld D B. H-splittings and two-stage itera-tive methods [ J ]. Numerische Mathematik, 1992, 63(1); 345 -356.
  • 6Zhang L L, Ren Z R. Improved convergence theorems ofmodulus-based matrix splitting iteration methods for linearcomplementarity problems [ J ]. Applied MathematicicsLetters, 2013,26: 638 - 642.
  • 7Li H B, Huang T Z,Li H. On some subclasses of P-ma-trices[ J ]. Numerical Linear Algebra with Applications,2007,14(5) :391 -405.
  • 8Van Bokhoven W M G. Piecewise-linear modelling and a-nalysis[ M]. Eindhoven : Proefschrift, 1981.
  • 9Bai Z Z. Modulus-based matrix splitting iteration methodsfor linear complementarity problems[ J]. Numerical Line-ar Algebra with Applications, 2010, 17:917 - 933.
  • 10Goldstein A A. Convex programming in Hilbert space[J ]. Bulletin of the American Mathematical Society,1964, 70: 709 -710.

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部