摘要
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.