期刊文献+

天基无源方式空间目标定位跟踪算法的实现 被引量:4

The Realization of Tracking Algorithm Based on Passive Space-based Space Target Surveillance System
下载PDF
导出
摘要 针对空间目标定位跟踪会因受到天气、地域和时间等因素的影响而导致跟踪精度下降、滤波不稳定的问题,采用天基无源方式对空间目标进行观测、定位和跟踪;依靠光电传感器的被动测角和针对无线电信号的侦察截获;通过天基观测站获取角度量测信息,建立仅测角无源跟踪状态方程和量测方程,再分别通过EKF、UKF和SCKF三种卡尔曼滤波算法对角度量测信息进行滤波估计从而实现对空间目标的实时跟踪。仿真结果表明,天基无源方式空间目标定位跟踪算法具有精度高、滤波稳定的优点,EKF、UKF、SCKF三种滤波算法均能实现对空间目标的实时跟踪,其中以SCKF效果最佳,验证了天基无源方式空间目标定位跟踪算法的有效可行性,对军事应用具有极大意义。 Aiming at the problem of space target tracking precision falling and unstable under the influence of factors such as weather,geography and time,passive space-based space target surveillance system is offered,which depending on the photoelectric sensor passive angle and in view of the reconnaissance intercepted radio signals to obtain the angle measurement information by space-based observatory. Bearing-only tracking state equation and measurement equation are built and angle measurement information is estimated by EKF,UKF and SCKF( Kalman filter) respectively. The result of simulation shows that passive space-based space target surveillance system improve the accuarcy and stability and EKF,UKF and SCKF are all able to achieve real-time tracking of space target,in which SCKF is the best. Passive space-based space target surveillance system has a significant effect on the military field.
出处 《科学技术与工程》 北大核心 2015年第6期272-277,58,共7页 Science Technology and Engineering
关键词 天基无源方式 光电传感器 定位跟踪 仅测角 卡尔曼滤波 passive space-based space target surveillance system photoelectric sensor location and tracking bearing-only Kalman filter
  • 相关文献

参考文献5

二级参考文献85

  • 1谢恺,薛模根,周一宇,安玮.天基红外低轨星座对目标的跟踪算法研究[J].宇航学报,2007,28(3):694-701. 被引量:23
  • 2周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报,2003,31(z1):1939-1944. 被引量:26
  • 3Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 4Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 5Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 6Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 7Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 8Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 9Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 10Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.

共引文献305

同被引文献44

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部