摘要
科学计量学的研究都是以科学知识的自相似性作为理论假设的,尤其是科学知识图谱更是以科学文献等在空间上的自相似性为前提,因此对科学知识网络自相似性的检验与证明是必不可少的。应用科学计量学与复杂网络分析的方法,选取网络的平均聚类系数、平均最短路径和平均度三个特征指标,建立科学知识网络的自相似模型,并对合作网络、共词网络与共被引网络的自相似性进行定性与定量的分析,从而验证了科学文献的网络拓扑结构的局部与整体具有自相似。
Self-similarity of scientific knowledge is the theoretical hypothesis of scientometrics. Especially the mappingknowledge is even based on the spatial self-similarity of scientific literatures. Therefore it is essential to investigate the selfsimilarityof scientific knowledge network. We applied scientometics and complex network analysis to study the self-similarity ofcooperative network, co-word network and co-citation network qualitatively and quantitatively, where select three characteristicindices which are the average clustering coefficient, average shortest path and the average degree of the network to establish a selfsimilaritymodel. In the resuilt, prove that the local network topology and global network topology of the scientific literature are selfsimilarity.
出处
《科学与管理》
2015年第1期34-40,共7页
Science and Management
基金
辽宁省教育厅科学研究一般项目"科学引文共被引网络的科学计量研究"(W2012018)
国家自然科学基金资助项目"基于蚁群觅食模型的科学知识的复杂性演化机理研究"(71003011)
关键词
科学文献
科学知识网络
自相似性
科学计量学
知识图谱
:Scientific literature
Scientific knowledge network
Self-similarity
Scientometrics
Mapping knowledge domain