期刊文献+

蝉翼表面结构对细菌细胞作用的理论研究 被引量:1

A Theoratical Study for Effect of Cicada Wing Surfaces on Bacterial Cells
原文传递
导出
摘要 实验研究发现鸣蝉(Psaltoda claripennis)蝉翼表面特殊的纳米结构可以有效杀死某些附着在其表面的细菌,而且,这种杀菌过程完全是一种物理效应,并不涉及任何化学反应。蝉翼这种特殊的抗菌能力为研制新型抗菌材料提供了依据。作者由蝉翼表面纳米结构对细菌细胞壁形态的影响,提出了一种解释细菌细胞壁在蝉翼表面机械性破裂机制的弹性力学模型。模型中,由细菌细胞壁的拉伸度来确定蝉翼表面纳米结构对细菌细胞壁的影响。分别对革兰氏阳性和阴性细菌细胞壁在蝉翼表面上的拉伸度进行计算。结果表明,不同强度的细菌细胞壁在蝉翼表面纳米结构上发生的拉伸形变有明显差异,绝大部分革兰氏阴性细菌细胞壁拉伸度超过其承受能力,可发生机械性破裂。 The nanopatterns on the surface of clanger cicada (Psaltoda claripennis) wings can kill bacteria on contact based solely by their physical surface structure. It represents the first example that refers to a new class of biomaterials. Based on the interactions between bacterial cells and nanopatterned surface structures of clanger cicada wings, an elastic mechanical model was proposed to investigate the rupture of the bacterial cell walls. The effect of surface nanoroughness on the bacterial cell wall was evaluated by the stretching of the cell walls. The calculated results with respect to the stretching of Gram-positive and negative bacteria as functions of the geometric parameters of surface structures were obtained and discussed. It was obviously different between the stretching of Gram-positive and negative bacteria, and the stretching of Gram-negative bacteria led to irreversible cell wall rupture and death of bacteria.
出处 《生物物理学报》 CAS CSCD 北大核心 2014年第6期454-462,共9页 Acta Biophysica Sinica
基金 国家自然科学基金项目(31106188) 教育部自然科学研究重点项目(211030)~~
关键词 抗菌性 纳米结构 悬链线 弹性力学 Antibacterial Nanostructure Catenary Elastic mechanics
  • 相关文献

参考文献18

  • 1Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin M J, Lnbbe C, Crawford RJ. Natural bactericidal surfaces: Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 2012, 8:2489-2494.
  • 2Z.hang G, Zhang J, Xie G, Liu Z, Shao H. Cicada wings: A stamp from nature for nanoimprint lithography. Small, 2006, 2(12): 1440-1443.
  • 3Gao XF, Jiang L. Biophysics: Water-repellent legs of water striders. Nature, 2004, 432(7013): 36.
  • 4Gao H J, Wang X, Yao HM, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mech Mater, 2005, 37:275-285.
  • 5Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20:3517-3519.
  • 6Bhushan B, Jung YC, Niemietz A, Koch K. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes. Langmuir, 2009, 25(3): 1659-1666.
  • 7Bazaka K, Jacob MV, Crawford R J, Ivanova EP. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol, 2012, 95:299-311.
  • 8Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Nguyen THP, Boshkovikj V, Fluke C J, Watson GS, Watson JA, Crawford R J, Ivanova EP. Biophysical model of bacterial ceil interactions with nanopatterned cicada wing surfaces. Biophys J, 2013, 104:835-840.
  • 9Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA, Watson GS, Watson JA, Crawford R J, Ivanova EP. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol, 2013, 97(1): 9257-9262.
  • 10Hasan J, Crawford R J, Ivanova EP. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol, 2013, 31(5): 295-304.

二级参考文献49

  • 1张志国,靳明君,邹振祝.自重荷载作用下悬索静力解析解[J].中国铁道科学,2004,25(3):67-70. 被引量:24
  • 2沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报,1996,29(2):3-9. 被引量:176
  • 3Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium[J].Phys. Rev. B, 1989,40:6085-6109.
  • 4Abell G C. Empirical chemical pseudopotential theory of molecular and metallic bonding [ J]. Phys. Rev. B, 1985,31:6184-6196.
  • 5Tersoff J. New Empirical Modal for the Structural Properties of Silicon[ J]. Phys. Rev. Lett, 1986,56:632-635.
  • 6Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J]. Phys. Rev. B,1990,42:9458-9471.
  • 7Stillinger, Weber T. Computer simulation of local order in condensed phases of silicon [ J]. Phys. Rev. B, 1985,31:5262-5271.
  • 8Kohan A F, Ceder G. Tight-binding calculation of formation energies in multicomponent oxides:Application to the MgOCaO phase diagram[ J]. Phys. Rev. B, 1996,54:805-811.
  • 9Laurent J. Lewis and Normand Mousseau. Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials [ J]. Computational Materials Science,1998,12:210-241.
  • 10Biswas R, Hamann D R. Interatomic Potentials for Silicon Structural Energies [ J]. Phys. Rev. Lett, 1985,55: 2001-2005.

共引文献45

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部