期刊文献+

TP347H的高温蠕变-疲劳交互规律 被引量:10

Interactions Between Creep and Fatigue of TP347H under High Temperature
下载PDF
导出
摘要 对TP347H不锈钢进在550℃下纯疲劳及550℃下的蠕变-疲劳交互下的微观组织演化及疲劳寿命变化进行研究。断口的扫描电镜形貌表明在蠕变-疲劳交互下存在高温动态回复,使得蠕变-疲劳断口未形成二次裂纹与解理面,而在纯疲劳下存在较多二次裂纹与解理面;透射电镜形貌表明在蠕变疲劳交互下金属内部局部会形成清晰的位错墙和位错胞结构,错增殖密度相对于纯疲劳也大大降低,此时材料的循环软化特征明显,因此蠕变-疲劳交互会导致材料的疲劳寿命显著降低。对不同应变幅下TP347H的蠕变-疲劳寿命试验证明不同应变幅下TP347不锈钢的蠕变-疲劳循环寿命相对于纯疲劳条件下都有降低,降低的程度随应变幅的增加而增大。 Research is made on the evolutions of microstructure and fatigue life of TP347H stainless steel under pure fatigue(PF) and creep-fatigue(CF) at 550℃ .The fracture morphology ofscanning electron microscope(SEM) indicates that high temperature dynamic recovery existed under the interactions of creep and fatigue, on the creep-fatigue fracture no secondary cracks and cleavage planes are formed, but on pure fatigue fracture many secondary cracks and small cleavage planes exist; Transmission electron microscope(TEM) morphology indicates that distinct dislocation walls and dislocation cells are formed on local positions under the interactions of creep and fatigue, dislocation multiplication density decreases significantly relative to under pure fatigue. The cyclic softening of TP347H is very obvious and leads to the obvious reduction of fatigue life under interactions of creep and fatigue. Creep-fatigue experiments under various strain amplitude of TP347H prove that creep-fatigue life are reduced obviously relative to pure fatigue, the reduced degree increases with the increment of strain amplitude.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第2期37-42,共6页 Journal of Mechanical Engineering
基金 '十二五'国家科技支撑计划(2011BAK06B02) 国家高技术研究发展计划(863计划 2012AA040103) 安徽工业大学优秀创新团队(000452)资助项目
关键词 高温 蠕变 疲劳 交互作用 TP347H TP347H high temperature creep fatigue interactions TP347H TP347H high temperature creep fatigue interactions
  • 相关文献

参考文献1

二级参考文献21

  • 1杨铁成,陈凌,范志超,陈学东,蒋家羚.1.25Cr0.5Mo钢高温疲劳蠕变交互作用的寿命预测[J].压力容器,2005,22(9):8-12. 被引量:12
  • 2范志超,陈学东,陈凌,蒋家羚.基于延性耗竭理论的疲劳蠕变寿命预测方法[J].金属学报,2006,42(4):415-420. 被引量:22
  • 3COFFIN L F.International symposium on creep-fatigue interactions[C]//CURRAN K M,ed.MPC.3,ASME,New York,1976:349-363.
  • 4COFFIN L F.Fatigue at high temperature and interpretation[C]//Proceedings of Institute of Mechanical Engineers,London,1974,188:109-127.
  • 5MANSON S S,HALFORD G R,HIRSCHBERG M H.Creep-fatigue analysis by strain-range partitioning[C]//First Symposia on Design for Elevated Temperature Environment,ASME,1971:12-28.
  • 6OSTERGREN W J.A damage fundation hold time and frequency effects in elevated temperature low cycle fatigue[J].Journal of Testing Evaluation,1967,4:327-339.
  • 7GOSWAMI T.Creep-fatigue life prediction-a ductility model[J].High Temperature Materials and Processes,1995,14(2):101-114.
  • 8GOSWAMI T.New creep-fatigue life prediction model[J].High Temperature Materials and Processes,1996,15(1-2):91-96.
  • 9GOSWAMI T.Low cycle fatigue life prediction-a new model[J].International Journal of Fatigne,1997,19(2):109-115.
  • 10JEONG C Y,CHOI B G,NAM S W.Normalized life prediction in terms of stress relaxation behavior under creep-fatigue interaction[J].Materials Letters,2001,49(1):20-24.

共引文献20

同被引文献88

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部