期刊文献+

非叠加型可变形两栖机器人水下推进方法 被引量:3

Underwater Propulsion Principle for a Non-superposition Amphibious Transformable Robot
下载PDF
导出
摘要 受自然界中变形虫和生物蛇启发,将可变形和链式构型特性引入两栖机器人。通过运动特性、水环境适应性和可变形能力扩展等综合分析,设计了没有添加额外水下推进机构的非叠加型两栖机器人链式可变形构型。该机器人在陆地环境具有较高机动性外,还具有履带划水和仿生划水组合的复合推进方式。提出基于理想推进器的履带划水推进模型;针对仿生划水时运动学与流体力的耦合关系,提出基于拉格朗日方程的运动学-动力学联合运动模型,并建立了转向模型,完成仿生推进方式的水中机动性能分析。通过仿真分析了履刺高度和分布等机构参数以及幅值、频率等运动参数对水下推进性能的影响。利用基于链式可变形构型研制的机器人样机Amoeba-II进行了水环境试验,验证该构型在水下推进中的有效性,并对履带划水和仿生划水的推进效率、稳定性进行对比。 Inspired by amoebae and snake in the nature, the transformable capability and link-type structure is brought in an amphibious robot. The link-type transformable configuration without adding extra underwater propulsion mechanism is designed for an amphibious robot through analysis on the movement characteristics, extending on the water environment adaptability and transformable ability, which has crawler-swimming propulsion mode and the bionic propulsion mode. The model of the crawler-swimming propulsion mode is established based on the ideal propeller. Aiming at the coupling relationship between the kinematics and fluid force in the fish-like propulsion mode, the associated model on the kinematics and dynamics is put forward based on the Lagrange equation. Together with the steering model, the motion performance of the bionic propulsion is analyzed. The simulation demonstrates the influence of the mechanism parameters such as height and distribution of the track grouser and motion parameters such as amplitude and frequency on the underwater propulsion. The experiments in the water environment performed on the robot prototype Amoeba-II verify the effectiveness of the amphibious link-type transformable configuration, and compare the propulsion efficiency and stability between crawler-swimming propulsion mode and the bionic propulsion mode.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第3期1-9,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61273345)
关键词 两栖机器人 链式可变形构型 履带划水 仿生划水 amphibious robot link-type transformable configuration crawler-swimming bionic propulsion amphibious robot link-type transformable configuration crawler-swimming bionic propulsion
  • 相关文献

参考文献15

  • 1杨清海,喻俊志,谭民,王硕.两栖仿生机器人研究综述[J].机器人,2007,29(6):601-608. 被引量:28
  • 2SARANLI U, BUEHLER M, KODITSCHEK D E. Design, modeling and preliminary control of a compliant hexapodrobot[C]// IEEE International Conference on Robotics and Automation, April 24-28, 2000, San Francisco, California, USA. San Francisco: IEEE, 2000: 2589-2596.
  • 3GRASSO F W, CONSI T R, MOUNTAIN D C. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges[J]. Robotics and Autonomous Systems, 2000, 30(1-2): 115-131.
  • 4王立权,孙磊,陈东良,张玲,孟庆鑫.仿生机器蟹样机研究[J].哈尔滨工程大学学报,2005,26(5):591-595. 被引量:20
  • 5HIROSE S, TADOKORO S. From biologically-inspired robots to reality: snake and quadruped walking[C]//SICE Annual Conference, August 20-22, 2008, Tokyo, Japan. Tokyo: IEEE, 2008: 16-20.
  • 6TAKAYAMA T, HIROSE S. Amphibious 3D active cord mechanism "helix" with helical swimming motion[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems, September 30-October 4, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland. Lausanne: IEEE, 2002: 775-780.
  • 7CRESPI A, BADERTSCHER A, GUIGNARD A. Swimming and crawling with an amphibious snake robot[C]// IEEE International Conference on Robotics and Automation, April 18-22, 2005, Barcelona, Spain. Barcelona: IEEE, 2005: 3024-3028.
  • 8王卫兵,喻俊志,成斌,黄中文,葛云.两栖仿生机器鱼Ⅰ的建模及推进机构设计[J].石河子大学学报(自然科学版),2009,27(1):92-96. 被引量:8
  • 9梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展I——鱼类推进机理[J].机器人,2002,24(2):107-111. 被引量:55
  • 10CAMPBELL D, BUEHLER M. Stair descent in the simple hexapod 'rhex'[C]//IEEE International Conference on Robotics and Automation, September 14-19, 2003, Taipei, Taiwan, China. Taipei: IEEE, 2003: 1380-1385.

二级参考文献83

共引文献156

同被引文献24

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部