期刊文献+

基于混合互信息和改进粒子群优化算法的医学图像配准方法 被引量:9

Medical Image Registration Algorithm Based on Mixed Mutual Information and Improved Particle Swarm Optimization
下载PDF
导出
摘要 为满足医学图像辅助诊断与治疗的需要,提出一种基于混合互信息和改进粒子群优化算法的医学图像配准方法。在每次迭代时,首先使用基于Renyi熵的改进粒子群优化算法对图像进行全局搜索,再使用基于Shannon熵的Powell算法对当前得到的最优解进行局部寻优。实验图像为60幅模拟图像和10幅临床图像,对70幅图像进行单模态和多模态的医学图像配准实验,所提出算法的单模态医学图像配准结果均达到亚像素级。在多模态医学图像配准实验中,采用5种性能指标,评价配准结果的质量。同3种医学图像配准算法进行比较,结果显示新算法除计算时间外,其他4项指标均为最优,MI指数、NMI指数和CC指数的均值分别为1.338 6、1.363 1和0.837 8。主观和客观分析显示,所提出算法在精确度和收敛速度方面均优越于其他配准算法。 A novel medical image registration method based on mixed mutual information and improved particle swarm optimization algorithm was proposed. During each iteration of the proposed algorithm, the improved particle swarm optimization algorithm based on Renyi' s entropy was adopted firstly in global searching phase. Then the mutual information measure based on Shannon' s entropy was taken as the objective function while the Powell algorithm was used to obtain the optimal solution in local searching phase. The mono-modality medical image registration accuracy including sixty simulated images and ten clinical medical images is improved to sub- pixel level by the proposed algorithm. Comparing with the other three algorithms in the experiment of multi- modality medical image registration, the quality of the registered image was evaluated by five kinds of objective criterions, the proposed algorithm was optimal for the four object indexes except for computation time, the mean of MI, NMI and CC index was 1. 338 6, 1. 363 1 and 0. 837 8 respectively, subjective and objective analysis of the results showed that the proposed algorithm has the advantage in accuracy and effectiveness over other image registration methods.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2015年第1期1-7,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(81241059 61172108) 国家国际科技合作专项资助项目(2012DFA10700)
关键词 混合互信息 改进的粒子群优化算法 POWELL算法 医学图像配准 mixed mutual information improved particle swarm optimization Powell algorithm medical imageregistration
  • 相关文献

参考文献14

  • 1Dame A, Marchand E. Second-order optimization of mutual information for real-time image registration [ J ]. IEEE Transactions on Image Processing, 2012, 21 (9) : 4190 - 4203.
  • 2Zitova B, Flusser J. Image registration methods: a survey [ J]. Image and Vision Computing, 2003, 21( 11 ) : 977 - 1000.
  • 3Sahoo S, Nanda PK, Samant S. Tsallis and Renyi's embedded entropy based mutual information for muhimodal image registration [ C ]//of IEEE 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). Jodhpur: IEEE, 2013 : 1 -8.
  • 4Mariz AM. On the irreversible nature of the Tsallis and Renyi entropies [ J ]. Physics Letters A, 1992, 165 (5) : 409 - 411.
  • 5Kennedy J. Particle swarm optimization [ C ] //Sammut C, Webb GI, eds. Encyclopedia of Machine Learning. New York: Springer,2010 : 760 - 766.
  • 6Shi Yuhui, Eberhart R. A modified particle swarm optimizer [ C ]//Proceedings of IEEE 1998 International Conference on Evolutionary Computation. Anchorage: IEEE, 1998:69-73.
  • 7Shi Yuhui, Eberhart RC. Empirical study of particle swarm optimization [ C ]// Proceedings of IEEE 1999 Congress on Evolutionary Computation. Washington: IEEE, 1999: 3.
  • 8BrainWeb. Simulated Brain Database [ DB/OL]. http://www. bic. toni. mcgill, ca/brainweb/2006 - 08 - 01/2012 - 07 - 02.
  • 9Zhou Di, Wang Honghui, Xu Weizhong. Adaptive particle swarm optimizationfor medical image registration [ C ]// IEEE 2011 International Conference on Electrical and Control Engineering ( ICECE). Yichang: IEEE, 2011 : 4713 - 4716.
  • 10Ji JX, Pan Hae, Liang Zhipei. Further analysis of interpolation effects in mutual information-based image registrarion[J]. IEEE Transactions on Medical Imaging, 2003, 22 (9) : 1131 - 1140.

同被引文献78

  • 1王昕,李玮琳,刘富.小波域CT/MRI医学图像融合新方法[J].吉林大学学报(工学版),2013,43(S1):25-28. 被引量:13
  • 2刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 3梁健,吴丹.种子概念方法及其在基于文本的本体学习中的应用[J].图书情报工作,2006,50(9):18-21. 被引量:13
  • 4ANDREW J A,BENNETT A L.Non-local STAPLE:an intensity-driven multi-atlas rater model[J].Lecture Notes in Computer Science,2012,15(3):426-434.
  • 5SOTHRAS A,DAVATZIKOS C,PARAGIOS N.Deformable medical image registration:a survey[J].IEEE Trans.on Medical Imaging,2013,32(7):1153-1190.
  • 6Brainweb.Simulated brain database[DB/OL].(2012-08-20)[2015-04-09].http://www.bic.mni.mcgill.ca/brainweb/.
  • 7Chambolle A, Lions P L. Image recovery via total varia- tion minimization and related problems [J].Numerische Mathema-tik,1997,76(2):167-188.
  • 8Mariz AM. On the irreversible nature of the Tsallis and Renyi entropies [ J ]. Particle Letters A, 1992,165 (5): 409-411.
  • 9Maes F, Collignon A, Vandermeulen D, et al.. Muhimo- dality image registration by maximization of mutual information [ J ]. IEEE Trans. Medical Imaging, 1997, 16 (2): 187 - 198.
  • 10Shi Y, Eberhart R C. Empirical study of particle swarm optimization [ C ]//Evolutionary Computation, 1999.

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部