期刊文献+

溶液燃烧合成制备Ni-Y_2O_3纳米复合粉末(英文)

Solution combustion synthesis of Ni-Y_2O_3 nanocomposite powder
下载PDF
导出
摘要 采用溶液燃烧合成和氢气还原两步法制备具有超细Y2O3弥散相的Ni-Y2O3纳米复合粉末。通过DTA-TG分析探讨燃烧机理,使用场发射扫描电镜、透射电镜和X射线衍射分析技术表征燃烧得到的粉末形貌和Ni-Y2O3纳米复合粉末的形貌和物相。详细讨论原料中硝酸镍与尿素配比对燃烧得到的粉末形貌、物相和比表面积的影响。高分辨透射形貌分析结果显示合成得到的Ni-Y2O3纳米复合粉末中均匀分布的Y2O3弥散相的尺寸在10 nm左右,并且在放电等离子烧结致密化后并未明显长大。 Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期129-136,共8页 中国有色金属学报(英文版)
基金 Project(2132046)supported by the Beijing Natural Science Foundation,China Project(51104007)supported by the National Natural Science Foundation of China
关键词 纳米复合 纳米粉末 溶液燃烧合成 氧化物弥散强化 NI Y2O3 nanocomposites nanoparticles solution combustion synthesis oxide dispersion strengthening Ni Y2O3
  • 相关文献

参考文献30

  • 1LU Ke. The future of metals [J]. Science, 2010, 328: 319-320.
  • 2LIU G, ZHANG G J, JIANG F, DING X D, SUN Y J, SUN J, MA E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J], Nature Materials, 2013, 12: 344-350.
  • 3UKAI S, FUJIWARA M. Perspective of ODS alloys application in nuclear environments [J], Journal of Nuclear Materials, 2002, 307-311:749-757.
  • 4LIU Feng, LIU Yong, WU Hong, FANG Jing-ua, ZHAO Da-peng, ZHANG Liu-jie, LIU Dong-hua. Bi-modal microstructure in a powder metallurgical ferritic steel [J], Transactions of Nonferrous Metals Society of China, 2012, 22(2): 330-334.
  • 5MORRIS D G, MUNOZ-MORRIS M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics [J]. Acta Materialia, 2013, 61(12): 4636-4647.
  • 6HIRATA A, FUJITA T, WEN Y R, SCHNEIBEL J H, LIU C T, CHEN M W. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J], Nature Materials, 2011, 10: 922-926.
  • 7CASTROA V D, MARQUIS A E A, LOZANO-PEREZA S, PAREJAB R, JENKINS A M L. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy [J]. Acta Materialia, 2011, 59(10): 3927-3936.
  • 8RYU H J, HONG S H, WEBER J, TUNDERMANN J H. Effect of elastic interaction energy on coarsening of / precipitates in a mechanically alloyed ODS Ni-base superalloy [J], Journal of Materials Science, 1999, 34(2): 329-336.
  • 9MILLER M K, KENIK E A, RUSSELL K F, HEATHERLY L, HOELZER P, MAZIASZ J. Atom probe tomography of nanoscale particles in ODS ferritic alloys [J], Materials Science and Engineering A, 2003, 353: 140-145.
  • 10ZHANG L, UKAI S, HOSHINO T, HAYASHI S, QU X H. Y203 evolution and dispersion refinement in Co-base ODS alloys [J], Acta Materialia, 2009, 57: 3671-3682.

二级参考文献1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部