摘要
Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, cutting speed, feed rate and tool material on the maximum drilling temperature was investigated. The drilling parameters were optimized based on multiple performance characteristics in terms of the maximum cutting temperature and tool wear. According to the results, the most influential control factors on the cutting temperatures are found to be particle fraction, feed rate and interaction between the cutting speed and particle content, respectively. The influences of the cutting speed and drill material on the drilling temperature are found to be relatively lower for the used range of parameters. Minimum cutting temperatures are obtained with lower particle fraction and cutting speed, with relatively higher feed rates and carbide tools. The results reveal that optimal combination of the drilling parameters can be used to obtain both minimum cutting temperature and tool wear.
采用光学高温计对在不同钻削条件下的B4C金属基复合材料的钻削温度进行非接触测量。研究了颗粒含量、切削速度、进给速率和刀具材料对最高钻削温度的影响。基于最高切削温度和刀具磨损对钻削参数进行优化。结果表明:对最高切削温度影响最大的因素主要为颗粒含量、进给速率以及切削速率与颗粒含量间的相互作用。切削速率与切削材料对最高切削温度的影响相对较小。当颗粒含量较小,切削速度较低,进给速率较高,利用硬质合金刀具时,切削温度较低。采用优化后的钻削参数可以获得较低的切削温度和较小的刀具磨损。
基金
supported by Gazi University (07/2008-8)