期刊文献+

基于蚁群BP神经网络的汽车排气噪声有源控制 被引量:1

Active Noise Control of Engine Exhaust Based on AMMAS-BP Algorithm
下载PDF
导出
摘要 BP算法容易陷入局部极小值,对初值设置敏感,以及学习速度慢等缺陷,而蚁群算法具有全局寻优、正反馈以及分布式计算等特点,提出一种蚁群BP神经网络混合训练方法(AMMAS-BP)。采用自适应最大-最小蚁群算法(AMMAS),对BP网络的权值参数进行全局训练,再使用BP算法对其进行局部学习。建立基于AMMAS-BP算法的汽车排气噪声有源控制系统的仿真模型。仿真结果表明,该方法改善了BP算法的收敛速度和收敛精度,提高了控制系统的降噪效果。 In this paper, an improved BP algorithm based on adaptive max -min ant system, AMMAS -BP,is presented, which aiming at defecting that BP algorithm is easy to fall into local minimum, sensitive to the initial value and slows to learn, and advantages that ant colony optimization has characteristics of global optimization, positive feedback and distributed computer system. AMMAS is applied to global training of parameters of the neural network before LM algorithm is used for local learning. And the simulation of adaptive and active noise control system to cancel engine exhaust noise is built. The result shows that the method improves convergence speed, accuracy of BP algorithm and noise cancellation effect of the control system.
出处 《电声技术》 2015年第2期77-80,85,共5页 Audio Engineering
关键词 蚁群算法 自适应最大-最小蚁群系统 BP算法 噪声有源控制 ant colony optimization adaptive max- min ant system BP algorithm active noise control
  • 相关文献

参考文献13

二级参考文献80

共引文献271

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部