期刊文献+

极限学习机集成在骨髓细胞分类中的应用 被引量:2

Classification of bone marrow cells based on ensemble of extreme learning machine
下载PDF
导出
摘要 骨髓细胞的分类有重要的医学诊断意义。先对骨髓细胞图像分割和特征提取,用提取出来的训练集对极限学习机训练,再用该分类器对未知样本识别。针对单个分类器性能的不稳定,提出基于元胞自动机的极限学习机集成算法。通过元胞自动机抽样策略构建差异大的训练子集,多个分类器并行学习,多数投票法联合决策。实验结果表明,与BP、支持向量机比较,该算法基本无参数调整,学习速度快,分类精度高能达到97.33%,且有效克服了神经网络分类器不稳定的缺点。 Classification of bone marrow cells has important medical diagnostic significance. The training samples set extracted from the segmented images of bone marrow cells is used to train the extreme learning machine. Then this trained extreme learning machine automatically classifies the unknown bone marrow cells. For the instability of performance of single classifier, the ensemble of extreme learning machine algorithm based on cellular automata is proposed.The different training subsets are constructed by cellular automata strategy through sampling, then they are learned in parallel with multiple classifiers, finally the outputs are combined by majority voting. Experimental results show that this proposed algorithm has fast learning speed and gains high classification accuracy reached 97.33% without adjusting any parameters during run-time compared with BP neural networks and support vector machines. Moreover, it effectively solves the disadvantage of instability for the neural network classifier.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第2期136-139,共4页 Computer Engineering and Applications
基金 浙江省科技厅公益技术研究项目(No.2012C31020 No.2011C31020)
关键词 骨髓细胞 极限学习机 集成 bone marrow cells extreme learning machine ensemble
  • 相关文献

参考文献16

  • 1Hou Zhenjie,Ma Shuoshi,Pei Xichun,et al.Studies on segmentation and recognition marrow cells image[C]//Proceedings of International Symposium on Communications and Information Technology.Beijing:IEEE,2005:1263-1266.
  • 2Ushizima D M,Lorena A C,De Carvalho A C P F.Support vector machines applied to white blood cell recognition[C]//Proceedings of the 5th International Conference on Hybrid Intelligent Systems.Rio de Janeiro,Brazil:IEEE Computer Press,2005:379-384.
  • 3Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 4Wolfram S.Theory and applications of cellular automata[M].Singaprot:World Scientific Publishing Company,1986:7-50.
  • 5杨晓敏,罗立民,韦钰.血液白细胞计算机分类中的特征提取研究[J].应用科学学报,1994,12(2):120-126. 被引量:14
  • 6Yong X,Hui J,Cornelia F,Viewpoint invariant texture description using fractal analysis[J].International Journal of Computer Vision,2009,83(1):85-100.
  • 7张小京,孙万蓉,钟政辉.骨髓细胞显微图像的分形特征分析[J].中国图象图形学报,2006,11(5):624-629. 被引量:6
  • 8Gajardo A,Kari J,Moreira A.On time-symmetry in cellular automata[J].Journal of Computer and System Sciences,2012,78(4):1115-1126.
  • 9刘小平,黎夏,叶嘉安,何晋强,陶嘉.利用蚁群智能挖掘地理元胞自动机的转换规则[J].中国科学(D辑),2007,37(6):824-834. 被引量:56
  • 10Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(3):489-501.

二级参考文献40

共引文献113

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部