期刊文献+

基于萤火虫算法的匹配追踪用于生态声音辨识 被引量:3

Glowworm swarm optimization and matching pursuit sparse decomposition for ecological environmental sounds identification
下载PDF
导出
摘要 针对生态环境中背景噪声对声音辨识产生干扰的问题,提出利用萤火虫算法优化匹配追踪的方法进行生态声音辨识。利用匹配追踪(MP)稀疏分解声音信号,在保留信号主体结构的前提下对其进行重构,减小噪声的影响。使用萤火虫(GSO)算法优化搜索最佳匹配原子,实现MP快速分解。对重构信号提取Mel频率倒谱系数(MFCCs),MP时频特征及基音频率。结合支持向量机(SVM)对56种生态声音在不同环境和信噪比情况下进行分类识别。实验结果表明,与传统MFCC与SVM的方法相比,该方法对生态声音在不同信噪比下的识别性能得到不同程度的改善并且具有较好的抗噪性,尤其适合低信噪比(30 d B以下)噪声情境下使用。 The paper proposes a robust ecological environmental sounds identification system by using optimized matching pursuit algorithm which is optimized by Glowworm Swarm Optimization(GSO)to improve the performance of sound recognition in real environmental noisy conditions. It uses the Matching Pursuit(MP) to decompose the sound signal sparsely, and reconstructs its inner structure to reduce the influence of the noise. GSO is employed to speed up the searching for the best atom in each process of decomposition. Different feature sets are extracted. As the performance of popular Mel-Frequency Cepstral Coefficients(MFCC)degrades due to sensitivity to noise, MP based time-frequency features and Pitch are adopted to supplant the MFCCs feature. Through the SVM classifier, 56 subclasses of 4 classes of ecological environmental sounds are tested for the comparison experiments in different environments under different SNRs. The experimental results show that this approach outperforms traditional methods of MFCCs and SVM, as the average identification accuracy and robustness for ecological environmental sounds are improved to a different degree, especially under the conditions of SNRs lower than 30 d B.
作者 欧阳桢 李应
出处 《计算机工程与应用》 CSCD 北大核心 2015年第2期198-204,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075022)
关键词 生态声音辨识 匹配追踪 萤火虫算法 信号稀疏分解 MEL频率倒谱系数 ecological environmental sounds recognition matching pursuit glowworm swarm optimization sparse decom-position mel-frequency cepstral coefficients
  • 相关文献

参考文献20

  • 1Raju N,Mathini S,Priya T L,et al.Identifying the population of animals through pitch,formant,short time energy-a sound analysis[C]//International Conference on Computing,Electronics and Electrical Technologies(ICCEET),2012:704-709.
  • 2Chen W P,Chen S S,Lin C C,et al.Automatic recognition of frog calls using a multi-stage average spectrum[J].Computers&Mathematics with Applications,2012,64(5):1270-1281.
  • 3Tsau E S,Kim S H,Kuo C C J.Environmental sound recognition with celp-based features[C]//Proceedings of the 10th International Symposium on Signals,Circuits and Systems,Iasi,Romania,2011:1-4.
  • 4Ghiurcau M V,Rusu C.About classifying sounds in protected environments[C]//3rd International Symposium on Electrical and Electronics Engineering(ISEEE),2010:84-87.
  • 5Yan X,Li Y.Anti-noise power normalized cepstral coefficients for robust environmental sounds recognition in real noisy conditions[C]//4th International Conference on Computational Intelligence and Communication Networks(CICN),2012:263-267.
  • 6Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Trans on Signal Process,1993,41(12):3397-3415.
  • 7Yamakawa N.Environmental sound recognition for robot audition using matching pursuit[J].Modern Approaches in Applied Intelligence,2011:1-10.
  • 8Li S,Fang L.Signal denoising with random refined orthogonal matching pursuit[J].IEEE Transactions on Instrumentation and Measurement,2012,61(1):26-34.
  • 9Picot A,Whitmore H,Chapotot F.Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary[J].IEEE Transactions on Biomedical Engineering,2012,59(10):2808-2817.
  • 10Zhang T.Sparse recovery with orthogonal matching pursuit under RIP[J].IEEE Transactions on Information Theory,2011,57(9):6215-6221.

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部