期刊文献+

复域DSLA主动时反通信

Complex domain DSLA active time reversal communications
下载PDF
导出
摘要 通信系统建立在香农源-信道模型基础上,信道本身面临着两个必须解决的问题:信道多径传播引起的符号间干扰;噪声/干扰。因而接收端的信号是发射的信号失真和染污的复本。为此,从阵几何设计和信号处理角度两个方面考虑,采用空间宽带阵——双螺旋线阵(DSLA)发射/接收数据,并利用波传播时反不变性这一宽容的空-时结构特性作DSLA主动时反通信。同时在通信系统中调制信号、随机海洋噪声具有非寻性。因此,对信号做复增广表征,打破一般补相关为零的隐含假定,作复域DSLA主动时反通信。仿真结果验证了复域DSLA主动时反通信性能优于常规主动时反通信,尤其在小信噪比下能有效减小通信误码率,提高水声通信质量。 The communication system is based on the Shannon source-channel model. The channel suffers from two major kinds of impairments:one is inter-symbol interference, which is due to the multipath propagation; another one is noise/interference. The net result of the two impairments is that the signal received at the channel output is a noisy and distorted version of the signal that is transmitted. The paper considers it from two aspects, which are array geometric design and signal processing. It uses a spatial broadband array—double spiral line array transmitting/receiving data, and exploits the robust spatial-temporal property that wave propagation is time invariant. At the same time, the modulated signal in communication system and the random ocean noise is improper. So it is reasonable that do complex domain DSLA active time reversal communication, which makes a complex augmented characterization of signal and breaks the implicit assumption. The simulated result proves that complex domain DSLA active time reversal communication is better than traditional active time reversal communication, especially when the signal pulse noise is small it effectively reduces the error rate and improves the quality of underwater acoustic communication.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第2期230-235,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60872066 No.61171148)
关键词 主动时反 宽线性估计 双螺旋线阵 非寻性 active time reversal widely linear estimation double spiral line array impropriety
  • 相关文献

参考文献14

  • 1Haykin S.Adaptive filter theory[M].[S.l.]:Prentice Hall,2003.
  • 2Stojanovic M,Preisig J.Underwater acoustic communication channels:propagation models and statistical characterization[J].Communications Magazine,2009,47(1):84-89.
  • 3Haykin S.Array signal processing[M].Englewood Cliffs,NJ:Prentice-Hall,Inc,1985.
  • 4Manikas A.Differential geometry in array processing[M].[S.l.]:World Scientific Publishing Company,2004.
  • 5Manikas A,Sleiman A,Dacos I.Manifold studies of nonlinear antenna array geometries[J].IEEE Transactions on Signal Processing,2001,49(3):497-506.
  • 6Efstathopoulos G,Manikas A.Extended array manifolds:functions of array manifolds[J].IEEE Transactions on Signal Processing,2011,59(7):3272-3287.
  • 7Yang T C.Temporal resolutions of time-reversal and passivephase conjugation for underwater acoustic communications[J].IEEE Journal of Oceanic Engineering,2003,28(2):229-245.
  • 8Jensen F B.Computational ocean acoustics[M].[S.l]:Springer,2011.
  • 9Shimura T,Watanabe Y,Ochi H.Basic study on active time reversal communication in shallow water[J].Acoustical Science and Technology,2005,26(6):526-529.
  • 10Song A,Badiey M,Mc Donald V K,et al.Time reversal receivers for high data rate acoustic multiple-input-multipleoutput communication[J].IEEE Journal of Oceanic Engineering,2011,36(4):525-538.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部