期刊文献+

改进的约束优化多目标遗传算法及工程应用 被引量:8

Improved constrained optimization multi-objective genetic algorithm and engineering applications
下载PDF
导出
摘要 利用多目标法处理约束条件,提出一种改进的基于多目标优化的遗传算法用于求解约束优化问题。该算法将约束优化问题转化为两个目标的多目标优化问题;利用庄家法构造非劣个体,将种群分为支配子种群和非支配子种群,以一定概率分别从支配子种群和非支配子种群中选择个体进行算术交叉操作,引导个体逐步向极值点靠近,增强算法的局部搜索能力,对非支配子种群进行多样性变异操作。8个标准测试函数和3个工程应用的仿真实验结果表明了该算法的有效性。 Using multi-objective method to deal with constraint conditions, an improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, this algorithm is based on multi-objective technique,where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 8 benchmark functions and 3 engineering optimization problems, and compard with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第3期247-253,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.60974048) 湖南省高校创新平台开放基金项目(No.11K027) 湖南省科技厅计划项目资助(No.2013FJ6073 No.2014GK3033) 湖南省重点建设学科资助
关键词 多目标优化 遗传算法 约束优化问题 multi-objective optimization genetic algorithm constrained optimization problem
  • 相关文献

参考文献20

  • 1Long W,Liang X M,Huang Y F,et al.A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization[J].Computer-Aided Design,2013,45(12):1562-1574.
  • 2Amirjanov A.The development of a changing range genetic algorithm[J].Computer Methods in Applied Mechanics and Engieering,2006,195(19-22):2495-2508.
  • 3Ma H P,Simon D.Blended biogeography-based optimization for constrained optimization[J].Engineering Applications of Artificial Intelligence,2011,44(3):517-525.
  • 4Sun C L,Zeng J C,Pan J S.An improved vector particle swarm optimization for constrained optimization problems[J].Information Science,2011,181(6):1153-1163.
  • 5龙文,梁昔明,徐松金,陈富.聚类佳点集交叉的约束优化混合进化算法[J].计算机研究与发展,2012,49(8):1753-1761. 被引量:18
  • 6Zhang C J,Li X Y,Gao L,et al.An improved electromagnetism-like mechanism algorithm for constrained optimization[J].Expert Systems with Applications,2013,40(14):5621-5634.
  • 7Gen M,Cheng R W.Genetic algorithm and engineering design[M].New York:Johy Wiley&Sons,1997.
  • 8Runasson T P,YAO X.Stochastic ranking for constrained evolutionary optimization[J].IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
  • 9Venkatraman S,Yen G G.A generic framework for constrained optimization using genetic algorithm[J].IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
  • 10Barbosa H J C,Lemonge A C C.An adaptive penalty method for genetic algorithm in constrained optimization problems[M].Vienna:I-Tech Education and Publishing,2008:9-34.

二级参考文献26

  • 1董红斌,黄厚宽,何军,侯薇.一种求解约束优化问题的演化规划算法[J].计算机研究与发展,2006,43(5):841-850. 被引量:7
  • 2Brachetti P, et al.. A new version of the Price's algorithm for global optimization[J]. Journal of Global Optimization, 1997, 10:165-184
  • 3Jiao Yong-Chang, et al.. A modification to the new version of the Price's algorithm for continuous global optimization problems[J]. Journal of Global Optimization, 2006, 36(4): 609-626
  • 4Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Reading, Ma: Addison Wesley, 1989
  • 5Ondrej Hrstka, Anna Kucerova. Improvements of real coded genetic algorithms based on differential operators preventing premature convergence[J]. Advances in Engineering Software, 2004, 35:237-246
  • 6Wang Hsiao-Fan, Wu Kuang-yao. Hybrid genetic algorithm for optimization problems with permutation property[J]. Computers & Operations Research, 2004, 31:2453-2471
  • 7Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Trans. on Evolutionary Computation, 2000, 4(3): 284-294
  • 8Mezura-Montes E, Coello C A C. A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Trans. on Evolutionary Computation, 2005, 9(1): 1-17
  • 9Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic algorithms[J]. IEEE Trans. on Evolutionary Computation, 2005, 9(4): 424-435
  • 10Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Trans. on Evolutionary Computation, 2008, 12(1): 107-125

共引文献20

同被引文献71

  • 1彭武良,王成恩.关键链项目调度模型及遗传算法求解[J].系统工程学报,2010,25(1):123-131. 被引量:33
  • 2夏毅敏,林赉贶,罗德志,卞章括,吴元,沈斌.复合式土压平衡盾构盘形滚刀布置规律[J].中南大学学报(自然科学版),2013,44(9):3652-3657. 被引量:11
  • 3夏娜,蒋建国,魏星,章玲.改进型蚁群算法求解单任务Agent联盟[J].计算机研究与发展,2005,42(5):734-739. 被引量:27
  • 4鲁音隆,阳东升,刘忠,戴长华.联合作战规划中资源调度算法研究[J].火力与指挥控制,2006,31(2):12-16. 被引量:7
  • 5刘晓峰,陈通,张连营.基于微粒群算法的工程项目质量、费用和工期综合优化[J].土木工程学报,2006,39(10):122-126. 被引量:40
  • 6Blazewicz J, Lenstra J K, Kan A H G R. Scheduling sub- ject to resource constraints: Classification and complexity [ J ]. Discrete Applied Mathematics, 1983,5 ( 1 ) : 11-24.
  • 7Kazemipoor H, Tavakkoli-Moghaddam R, Shahnazari-Shahr- ezaei P, et al. A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems[ J]. The International Journal of Advanced Manufacturing Technolo- gy, 2013,64(5-8):1099-1111.
  • 8Carazo A F, G6mez T, Molina J, et al. Solving a compre- hensive model for multiobjecfive project portfolio selection [J]. Computers & Operations Research, 2010,37 (4): 630-639.
  • 9Tseng Ching-chih, Liu Bei-sheng. Hybrid Taguchi-genetic algorithm for selecting and scheduling a balanced project portfolio[J]. Journal of Science and Engineering Technolo- gy, 2011,7(1) :11-18.
  • 10Kremmel T, Kubalik J, Biffl S. Software project portfolio optimization with advanced multiobjective evolutionary algo-rithms[J]. Applied Soft Computing, 2011,11 ( 1 ) : 1416- 1426.

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部