期刊文献+

基于用户质量的微博社区博主影响力排序算法 被引量:10

Blogger influence ranking algorithm based on user quality in Sina microblog community
下载PDF
导出
摘要 微博特有的移动终端轻博客发布与交互模式,使其迅速成为使用范围最大、影响力最大的社交媒体。新浪中文微博现有超过3亿用户,发展最为迅速,中文微博和其他微博相比具有独特性,一些大"V"博主的影响力堪比电台电视。通过分析微博的网络结构特征,总结出微博相对于其他传统社会载体的特性。利用Page Rank算法的思想,设计了基于用户质量的User Impack Rank(UIR)排序算法。UIR算法通过用户相对微力值和用户相对链接质量对各博主的影响力进行动态的评估。在一个活跃的微博社区数据集上进行了全面的实验,实验结果显示了UIR算法能更加准确和客观地对用户的影响力进行排序,并且能有效地消除僵尸粉丝对排序的影响。 With the extraordinary spreading speed and impacting scope, has microblog become most important social network.At present, Sina Weibo(Chinese microblog)has 300 million plus users and is listed in the top rank of all social sites,which exhibits distinguished interaction and user behaviors. The primary investigation is performed among Chinese microblog using Sina Weibo. The user network graph is utilized to present the Chinese micro-blog network society, by analyzing its characteristics as a new social network. A User Impact Rank(UIR)measure is developed based on Page Rank. Bloggers' UIR is dynamically refined through the user relative micro-force value and the relative link quality. A test corpus is built by collecting all blogers and their posts in an active microblog community to evaluat the UIR measure method. The experimental results show that the proposed UIR can effectively exclude the illusive influence from spurious followers.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第4期128-132,174,共6页 Computer Engineering and Applications
基金 国家自然科学基金项目(No.200096715) 江苏省科技厅项目(No.BZ2010021)
关键词 相对微力值 相对链接质量 PAGE RANK USER Impack RANK relative micro-force value relative link quality Page Rank User Impack Rank
  • 相关文献

参考文献11

  • 1Lahan R.The economics of attention[M].[S.l.]:University of Chicago Press,2006.
  • 2Cashmore P.You Tube:Why do we watch?[DB/OL].(2010).http://editin.Cnn.Com/2009/TECH/12/17/cashmore.youtube/index.html.
  • 3Brin S,Page L.The anatomy of a large-scale hypertextual web search engine[J].Computer Networks and ISDN Systems,1998,30(1/7):107-117.
  • 4Cha Meeyoung.Measuring user-activity influence in Twitter:the million follower fallacy[C]//AAAI,2010:11-13.
  • 5Zhao Dejin.How and why people Twitter:the role that micro-blogging plays in informal communication at work[C]//GROUP 2009 of ACM,2009:247-249.
  • 6Bakshy E.Everyone's an influence:user influence rank on twitters[C]//WCDM2010,2010:7-9.
  • 7Ye Shaozhi,Wu Felix.Mesasuring message propagation and social influence on Twitter.com[C]//Soc Info,2010:223-228.
  • 8Strogatz S H.Exploring complex networks[J].Nature,2001,410:268-276.
  • 9Watts D J,Strogatz S H.Collective dynamics of'small-world'networks[J].Nature,1998,393(6684):440-442.
  • 10陈小飞 王轶彤 冯小军.一种基于网页质量的PageRank算法改进.计算机研究与发展,2009,46:381-387.

共引文献4

同被引文献80

  • 1李威,廖健,曾剑平.网络社交媒体用户影响力的动态量化方法[J].计算机应用研究,2020,37(S02):50-53. 被引量:2
  • 2Thomas L.SAATY.FUNDAMENTALS OF THE ANALYTIC NETWORK PROCESS - MULTIPLE NETWORKS WITH BENEFITS,COSTS,OPPORTUNITIES AND RISKS[J].Systems Science and Systems Engineering,2004,13(3):348-379. 被引量:14
  • 3周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:154
  • 4陈小飞 王轶彤 冯小军.一种基于网页质量的PageRank算法改进.计算机研究与发展,2009,46:381-387.
  • 5易兰丽.基于人类动力学的微博用户行为统计特征分析与建模研究[D].北京:北京邮电大学,2012.
  • 6中国互联网络信息中心.第35次中国互联网络发展状况统计报告[R].2015-02-03.
  • 7五大数据解读微博Q1财报[EB/oL].http://web2.iresearch.cn/media/20150518/249980.shtml,2015-05-18.
  • 8Rashotte L. Social influence. In Blackwell Encyclope- dia of Sociology[J].Demography,2007,16(4):208 - 210.
  • 9Leavitt A, Burchard E, Fisher D, Gilbert S. The influ- entials: New approaches for analyzing influence on twitter[J]. Web Ecology Project, 2009, 4(2): 1-18.
  • 10Wilson C, Boe B, Sala A, Puttaswamy K P N, Zhao B Y. User Interactions In Social Networks And Their Implications[J]. Acre Eurosys, 2009,(7):21-26.

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部