期刊文献+

基于堆叠稀疏自编码的模糊C-均值聚类算法 被引量:9

Fuzzy C-means clustering algorithm based on stacked sparse autoencoders
下载PDF
导出
摘要 针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特征通常比原始数据集更能反映待聚类样本的本质特征,用其代替原始数据集进行聚类,有助于提高聚类的效果。利用改进后的算法在UCI的几个标准数据集上进行实验,结果表明改进后的算法是有效可行的。 In order to solve the sensitivity of fuzzy C-means clustering algorithm to the outlier and the randomly initialized clustering center, the stacked sparse autoencoders and traditional fuzzy C-means clustering algorithm are combined to improve the traditional fuzzy C-means clustering algorithm. Because the stacked sparse autoencoders can extract features of the original data set from low-level to high-level, and high-level features can reflect the nature features of the sample data to be clustered better than the original data set, which will help to improve the clustering effect with high-level features instead of the original data. With experimenting on several standard data sets of UCI, it is shown that the improved algorithm is feasible.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第4期154-157,共4页 Computer Engineering and Applications
基金 江苏省高校"青蓝工程"中青年学术带头人培养对象资助项目 安徽省自然科学基金项目(No.1208085MA15) 合肥学院应用数学重点建设学科基金(No.2014xk08)
关键词 堆叠稀疏自编码 模糊C-均值聚类 特征 深度学习 stacked sparse autoencoders fuzzy C-means clustering features deep learning
  • 相关文献

参考文献16

  • 1余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:616
  • 2Ranzato M,Poultney C,Chopra S,et al.Ef fi cient learning of sparse representations with an energy-based model[C]//NIPS,2006.
  • 3Hinton G E,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
  • 4Krizhevsky A,Sutskever I,Hinton G E.Image Net classification with deep convolutional neural networks[C]//NIPS 2012:1106-1114.
  • 5Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics,1973(3):32-57.
  • 6Bezdek J C.Pattern recognition with fuzzy objective function algoritms[M].New York:Plenum Press,1981.
  • 7于剑.论模糊C均值算法的模糊指标[J].计算机学报,2003,26(8):968-973. 被引量:97
  • 8Pham D T,Otri S,Afify A,et al.Data clustering using the bees algorithm[C]//Proceedings of the 40th CIRP International Seminar on Manufacturing Systems,May 30-June1,2007,Liverpool,UK,2007.
  • 9Li C H,Huang W C,Kuo B C,et al.A novel fuzzy weighted C-means method for image classification[J].Int J Fuzzy Syst,2008,10(3):168-173.
  • 10蔡静颖,谢福鼎,张永.基于自适应马氏距离的模糊c均值算法[J].计算机工程与应用,2010,46(34):174-176. 被引量:12

二级参考文献54

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 2伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 3王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 4Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 5Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 6Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 7Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 8Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 10Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.

共引文献796

同被引文献68

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部