期刊文献+

一种基于几何约束的RANSAC改进算法 被引量:12

Improved RANSAC algorithm based on geometric constraints
下载PDF
导出
摘要 图像拼接技术中消除特征点误匹配是一项重要环节,针对传统的消除误匹配的RANSAC算法迭代次数多,计算复杂度较大且不能完全消除误匹配等缺点,提出了一种基于几何约束的RANSAC改进算法。该算法将几何约束法应用到RANSAC算法中,对图像特征匹配点进行聚类分组,根据每条匹配点对连接线的斜率应该相等、长度也应该相等这两个几何关系建立预判断模型,对匹配点对集合进行预提纯。实验证明,该算法相较于传统的RANSAC算法,误匹配基本消除,迭代次数减少,计算效率提高,从而提高了图像匹配算法的效率。 Eliminating false matching is an important part in image stitching technology. Traditional eliminating erroneous matching method in the field of image stitching is RANSAC algorithm, but this method need numerous iterations and complex computation, and it often can not completely eliminate the false matching. Focusing on these shortcomings in RANSAC, this paper presents an improved RANSAC algorithm which is based on the geometric constraints. Clustering and grouping the matching points, then establishing a prejudgment geometric constraints model with the two geometric relationship between each couple of matching points:(1)the slope of each connection segment of each couple is equal and(2)the length of each connection segment of each couple is equal, to pre-purify matching points. The experiments show that the algorithm compared to the traditional RANSAC algorithm, eliminates mis-matching, reduces the number of iterations, improves computational efficiency, thereby improves the efficiency of image matching algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第4期205-208,共4页 Computer Engineering and Applications
基金 教育部博士点基金(No.20120205120002) 交通部信息化专项(No.2012-364-812-105)
关键词 图像拼接 随机抽样一致(RANSAC)算法 几何约束 预提纯 image stitching Random Sample Consensus(RANSAC)algorithm geometric constraints pre-purified
  • 相关文献

参考文献15

  • 1Hua Zhen,Li Yewei,Li Jinjiang.Image stitch algorithm based on SIFT and MVSC[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery(FSKD),2010:2628-2632.
  • 2江铁,朱桂斌,孙奥.全景图像拼接技术研究现状综述[J].重庆工商大学学报(自然科学版),2012,29(12):60-65. 被引量:34
  • 3汤一平,叶永杰,朱艺华,顾校凯.智能全方位视觉传感器及其应用研究[J].传感技术学报,2007,20(6):1316-1320. 被引量:49
  • 4Gandhi T,Trivedi M M.Vehicle surround capture:survey of techniques and a novel omni-video-based approach for dynamic panoramic surround maps[J].IEEE Transactions on Intelligent Transportation Systems,2006,7(3):293-308.
  • 5Chen Yiyuan,Tu Yuanyao,Cheng Hsiang Chiu.An embedded system for vehicle surrounding monitoring[C]//20092nd International Conference on Power Electronics and Intelligent Transportation System(PEITS),2009:92-95.
  • 6阮芹,彭刚,李瑞.基于特征点的图像配准与拼接技术研究[J].计算机与数字工程,2011,39(2):141-144. 被引量:26
  • 7许新科,杨进华,王超,姚雪萍,申琳.基于视频图像的快速拼接算法研究[J].长春理工大学学报(自然科学版),2011,34(1):104-106. 被引量:6
  • 8Lowe D G.Object recognition from local scale invariant features[C]//Proceedings of the International Conference on Computer Vision,Kerkyra,Greece,1999:150-1157.
  • 9Lowe D G.Distinctive image features from scale invariant key points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10施庆,郭欣.基于角点检测配准的全景图像拼接技术研究[J].微型电脑应用,2011(6):18-21. 被引量:5

二级参考文献84

共引文献126

同被引文献96

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部