期刊文献+

抗HIV感染治疗模型及临床数据模拟

Anti-HIV infection treatment model and clinical data simulation
下载PDF
导出
摘要 基于饱和发生率和艾滋病病毒(HIV)诱导CD4+T细胞凋亡的机制,提出了一个改进的抗HIV感染治疗模型。新模型有病毒清除平衡点和持续带毒平衡点。证明了若模型的基本再生数R0小于1,则病毒清除平衡点全局渐近稳定;若模型的R0大于1,则持续带毒平衡点局部渐近稳定。基于斯坦福大学HIV耐药性数据库,用新模型模拟一组患者抗HIV感染治疗并做疗效的长期预测。数值模拟结果说明抗病毒治疗无法抑制HIV诱导CD4+T细胞凋亡;HIV耐药性出现后若不及时更换治疗方案,耐药性会增强;长期预测表明该组患者的抗HIV感染治疗以失败告终。 Based on a saturated infection rate and the mechanism of Human Immunodeficiency Virus(HIV)inducing the apoptosis in CD4 + T cells, a modified anti-HIV infection treatment model is proposed. This model has an infection-free equilibrium point and an endemic infection equilibrium point. It shows that if the model's basic reproductive number R0 less than 1, then the infection-free equilibrium point of the model is globally asymptotically stable, if the model's R0 greater than 1, then the endemic infection equilibrium point of the model is locally asymptotically stable. Based on the clinical data from HIV drug resistance database of Stanford University, it uses the proposed model to simulate the dynamics of a group patients' anti-HIV infection treatment and make long-term prediction for the group's anti-HIV infection treatment. Numerical simulations suggest that the anti-HIV infection treatment cannot control HIV inducing the apoptosis of CD4+ T cells, when the drug resistance appears, the resistance may get stronger if nothing changes in anti-HIV infection treatment, the anti-HIV infection treatment of the group patients is failed eventually.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第5期8-13,87,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61074192) 北京科技大学博研基金(No.06108126)
关键词 艾滋病病毒(HIV)感染模型 全局渐近稳定 基本再生数 数值模拟 Human Immunodeficiency Virus(HIV)infection model globally asymptotically stable basic reproductive number numerical simulation
  • 相关文献

参考文献24

  • 1World Health Organization.HIV/AIDS key fact[EB/OL].[2014-07-10].http://www.who.int/mediacentre/factsheets/fs360/en/.
  • 2Orellana J M.Optimal drug scheduling for HIV therapy efficiency improvement[J].Biomed Signal Proces,2011,6:379-386.
  • 3Wang Y,Zhou Y.Mathematical modeling and dynamics of HIV progression and treatment[J].Chin J Eng Math,2010,27(3):534-548.
  • 4Nowak M A,Bangham C R M.Population dynamics of immune response to persistent viruses[J].Science,1996,272(5258):74-79.
  • 5Nowak M A,Bonhoeffer S,Shaw G M,et al.Anti-viral drug treatment:dynamics of resistance in free virus and infected cell populations[J].J Theor Biol,1997,184:203-217.
  • 6Nowak M A,May R M.Virus dynamics[M].Oxford:Oxford University Press,2000.
  • 7Leenbeer P D,Smith H L.Virus dynamics:a global analysis[J].SIAM J Appl Math,2003,63(4):1313-1327.
  • 8季语,闵乐泉,苏永美,郑宇.具有饱和发生率的病毒感染模型的全局稳定性分析[J].生物数学学报,2010,25(2):267-272. 被引量:10
  • 9Holm G,Gabuzda D.Distinct mechanisms of CD4+and CD8+T-Cell activation and bystander apoptosis induced by human immunodeficiency[J].J Virol,2005,79(10):6299-6311.
  • 10Yue F Y,Kovacs C M,Dimayuga R C,et al.Preferential apoptosis of HIV-1-specific CD4+T cells[J].J Immunol,2005,174:2196-2204.

二级参考文献37

  • 1苟清明,王稳地.一类具有饱和发生率的SEIS模型的全局稳定性[J].生物数学学报,2008,23(2):265-272. 被引量:12
  • 2高淑京,滕志东.一类具饱和传染力和常数输入的SIRS脉冲接种模型研究[J].生物数学学报,2008(2):209-217. 被引量:14
  • 3Nowak M A, May R M. Viral dynamics[M]. Oxford: Oxford University Press, 2000.
  • 4Liu W M, Hethcote H W, Levin S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Journal of Mathematical Biology, 1987, 25(4):359-380.
  • 5Song X Y, Neumann A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1): 281-297.
  • 6Ruan S G, Wang W D. Dynamical behavior of an epidemic nmdel with a nonlinear incidence rate[J]. Journal of Digerential Equations, 2003, 188(1): 135-163.
  • 7Hethcote H W, Driessche P. Some epidemiological models with nonlinear incidence[J]. Journal of Mathe- matical Biology, 1991, 29(3): 271-287.
  • 8May R M, Anderson R M. Regulation and stability of host-parasite population interactions II. Destabilizing processes[J].Journal of Animal Ecology, 1978, 47(1): 249-267.
  • 9Li M Y, Wang L C. Global stability in some SEIR epidemic models[J]. Institute for Mathematics and Its Applications, 2002, 126: 295-311.
  • 10Li M Y, Graef J R, Wang L C, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2): 191-213.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部