期刊文献+

融合多特征的行为识别方法研究 被引量:1

Research on action recognition via multi-feature fusion
下载PDF
导出
摘要 基于时空特征的方法是行为识别的主流方法,已经有许多研究学者提出了多种局部时空特征。然而,不同的局部特征所反映的行为信息的侧重点并不一样。通过引入集成学习的方法,对多种特征在分类器层次上进行融合,使得多种特征能够优势互补,从而增强了特征的描述能力,为构建出高效、稳定的行为识别分类器提供了保证。经仿真实验验证,所提出的方法是鲁棒和有效的。 The approach based on the local spatial-temporal features has emerged to be the mainstream method in action recognition area. And various descriptors of local spatial-temporal feature have been presented by researchers. However,different local features may reflect different emphasis of human activity. In this paper, the ensemble learning methods are introduced to perform a late fusion of multiple features so as to enhance the expressing ability of the local features. By the fusion of features, a more effective and robust action classifier can be built up. And the experimental results demonstrate the robustness and effectiveness of the proposed method.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第5期132-136,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61373076 No.61202143) 福建省自然科学基金(No.2013J05100 No.2010J01345 No.2011J01367) 高等学校博士学科点专项科研基金(No.201101211120024)
关键词 集成学习 多特征融合 行为识别 ensemble learning multi-feature fusion action recognition
  • 相关文献

参考文献19

  • 1Bobick A,Davis J W.The recognition of human movement using temporal templates[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(3):257-267.
  • 2Veeraraghavan A,Roy-Chowdhurya K,Chellappa R.Matching shape sequences in video with applications in human movement analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005:1896-1909.
  • 3Moeslund T B,Hilton A,Krüger V.A survey of advances in vision-based human motion capture and analysis[J].Computer Vision and Image Understanding,2006,104(2):90-126.
  • 4Bashir F I,Khokhar A A,Schonfeld D.Object trajectorybased activity classification and recognition using hidden Markov models[J].IEEE Trans on Image Processing,2007,16(7):1912-1919.
  • 5Baysal S,Kurt M C,Duygulu P.Recognizing human actions using key poses[C]//International Conference on Pattern Recognition,2010.
  • 6Yang Weilong,Wang Yang,Mori G.Recognizing human actions from still images with latent poses[C]//IEEE Conference on Computer Vision and Pattern Recognition,2010.
  • 7Wang Li,Cheng Li.Human action recognition from boosted pose estimation[C]//International Conference on Intelligent Computation Technology and Automation,2010.
  • 8Laptev I,Lindeberg T.Space-time interest points[C]//Proceedings 9th IEEE International Conference on Computer Vision,2003:432-439.
  • 9Shabani A H,Clausi D A,Zelek J S.Improved spatiotemporal salient feature detection for action recognition[C]//British Machine Vision Conference,Dundee,UK,2011.
  • 10Laptev I,Marszalek M.Learning realistic human actions from movies[C]//IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部