期刊文献+

Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators 被引量:1

Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators
下载PDF
导出
摘要 Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity HCi can be obtained at a low sintering temperature of 900℃ even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40GHz. Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity HCi can be obtained at a low sintering temperature of 900℃ even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40GHz.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期150-153,共4页 中国物理快报(英文版)
基金 Supported by the Scientific Research Foundation of Education Office of Sichuan Province under Grant No 13Z198 the Young and Middle-aged Academic Leaders of Scientific Research Funds of Chengdu University of Information Technology under Grant No J201222
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部