期刊文献+

Label-Free and Real-Time Monitor of Binding and Dissociation Processes between Protein A and Swine IgG by Oblique-Incidence Reflectivity Difference Method

Label-Free and Real-Time Monitor of Binding and Dissociation Processes between Protein A and Swine IgG by Oblique-Incidence Reflectivity Difference Method
下载PDF
导出
摘要 Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics. Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期35-38,共4页 中国物理快报(英文版)
基金 Supported by the Key Research Program of Chinese Academy of Sciences
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部