摘要
在离散事件系统的基于模型诊断中,提出了一种增量的可诊断性判定方法,用于提高可诊断性判定的效率。通过在状态上反向传播故障标签的方法,建立预诊断器。在预诊断器模型上,结合虚拟在线的观测窗口,增量进行可诊断性判断,决定是否对当前状态剪枝。提出增量算法,并证明该算法的正确性。实验验证增量可诊断性算法的效率,并实验研究了增量窗口大小对增量可诊断性判定效率的影响。
In model based diagnosis of discrete event system, an incremental method is proposed to determine the diagnosability and improve the efficiency of determining diagnosability. By reversely spreading the faulty labels on states, the pre-diagnoser is built. Then based on the diagnoser and the virtual online observation windows, the diagnosability is determined incrementally, and it is decided whether to prune the current state and return the result of diagnosability. An incremental algorithm is proposed and its correctness is proved. The experiment not omnly verifies the efficiency of the incremental algorithm but also tests the relationship between the size of the observation windows and the efficiency of determining diagnosability.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2015年第1期222-228,共7页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(61133011
60973089
61003101
61170092)
吉林省科技发展计划项目(20101501
20100185)
教育部博士学科点专项科研基金项目(20100061110031)
浙江师范大学计算机软件与理论省级重中之重学科开放基金项目(ZSDZZZZXK12)
浙江省自然科学基金项目(Y1100191)
关键词
人工智能
基于模型诊断
可诊断性
增量方法
artificial intelligence
model-based diagnosis
diagnosability
incremental method