期刊文献+

多损失条件风险值的多层规划模型

A multi-level programming of multi-loss conditional value-at-risk model
下载PDF
导出
摘要 对于多个损失函数,在给定的置信水平下,首先定义了不超过给定损失值的最小风险值(即Va R值)和基于权值的累积期望损失值(即CVa R损失值)概念,然后建立了一个多损失条件风险值的多层规划模型.该模型的目标是求各层多损失CVa R值达最小的最优策略,并证明了它等价于另一个较容易求解的多层规划模型.最后,给出了三级供应链中多产品的定价与订购的条件风险值模型(三层线性规划模型). For a multi-loss function, at a given confidence level, the concepts of the loss value not exceeding a given minimum value at risk(Va R) and the corresponding cumulative expected loss value(i.e., the CVa R loss value) with the corresponding weight value level are introduced first. Then,a multi-level programming model of the multi-loss CVa R model is obtained. The goal of the model is to get an optimal strategy of the minimum CVa R value each level. This model can be solved more easily through another multi-level programming model to obtain the optimal solution. Finally, a multiproduct pricing and ordering of a three-stage supply chain model(a tri-level linear programming model)is presented.
作者 蒋敏 孟志青
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2015年第1期91-100,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(71001089) 浙江省自然科学基金(LY13G010003)
关键词 多损失条件风险值 多层规划 最优解 供应链 multi-loss conditional value-at-risk multi-level programming optimal solution supply chain
  • 相关文献

参考文献27

  • 1Sta~kelberg H V. The Theory of the Market Economy[M]. Oxford: Oxford University Press, 1952.
  • 2Luis N. Vicente, Paul H. Calamai, Bilevel and multilevel programming: A bibliography review[J]. Journal of Global Optimization, 1994, 5(3): 291-306.
  • 3Colson B, Marcotte P, Savard G. Bilevel programming: a survey[J]. A Quarterly Journal of Operation Research, 2005, 4(2): 87-107.
  • 4Benson H P. On the strueture and properties of a linear multilevel programming problem[J]. Journal of Optimization Theory and Applications, 1989, 60(3): 353-373.
  • 5Bard J F. An investigation of the linear three-level programming problem[J]. IEEE Trans- actions Systems, Man, and Cybernetics, 1984, 14(5): 711-716.
  • 6Wen U P, Bialas W F. The hybrid algorithm for solving the three-level linear programming problem[J]. Computers & Operations Research, 1986, 13(4): 367-377.
  • 7White D J. Penalty function approach to linear trilevel programming[J]. Journal of Opti- mization Theory and Applications, 1997, 93(1): 183-197.
  • 8阮国桢,左晓波.线性多级规划的最优性条件和基本性质[J].系统科学与数学,1998,18(2):159-166. 被引量:3
  • 9Zhu Shushang , Wang Shouyang, Coladas L. Two theorems on multilevel programming problems with dominated objective functions[J]. Applied Mathematics Letters, 2001, 14(8): 927-932.
  • 10Sinha S, Sinha S B. KKT transformation approach for multi-objective multi-level linear programming problems[J]. European Journal of Operational Research, 2002, 143(1): 19-31.

二级参考文献107

  • 1蒋敏,胡奇英,孟志青.一种风险值最优控制模型[J].西安电子科技大学学报,2006,33(1):142-144. 被引量:2
  • 2许明辉,于刚,张汉勤.带有缺货惩罚的报童模型中的CVaR研究[J].系统工程理论与实践,2006,26(10):1-8. 被引量:92
  • 3阮国桢,杨丰梅,汪寿阳.多层线性规划问题可行解的充要条件和单纯形算法[J].系统工程理论与实践,1996,16(11):1-8. 被引量:9
  • 4邓胜岳,成央金,龙少华,马宗刚.求目标控制型线性三级规划的罚函数法[J].湘潭大学自然科学学报,2007,29(1):28-32. 被引量:2
  • 5Khouja M. The single-period (newsvendor) problem: literature review and suggestion for future research[J]. Omega, 1999, 27: 537-553.
  • 6Schweitzer M. E., Cachon G. P. Decision bias in the newsvendor problem with a known demand distribution: experimental evidence [J].Management Science, 2000, 46: 404-420.
  • 7Charles X. Wang, Scott Webster. The Loss-averse Newsvendor Problem [J]. Omega, 2009, 37: 93-105.
  • 8Rockafeller T. R., Uryasev S. Optimization of conditional value-at-risk [J].Journal of Risk, 2000, 2(3): 21-24.
  • 9Rockafeller T. R., Uryasev S. Conditional value-at-risk for general loss distribution [J].Journal of Banking and Finance, 2002, 26:1443-1471.
  • 10Pasternack B. A. Optimal pricing and return policies for perishable commodities [J].Marketing Science, 1985, 4: 66-76.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部