期刊文献+

基于局部不变特征的目标自动识别 被引量:3

Automatic Target Recognition Based on Local Invariant Features
下载PDF
导出
摘要 为快速、准确地识别图像中的目标,提出一种结合图像熵和加速鲁棒特征算法的目标自动识别方法.首先,分块计算图像的信息熵,根据阈值筛选出纹理丰富区域.然后,结合Hessian矩阵和Harris算法提取纹理丰富区域的局部特征点.接着,计算特征向量并用主成分分析降低向量维数.最后,采用双向最近距离比例匹配算法进行分类,并用随机抽样一致算法剔除误匹配点.实验结果表明:对仿真数据库中带有视角、光照和尺度变化的图像,识别率分别为87.12%、75.31%和84.98%,平均识别时间分别为70.35ms、71.27ms、220.63ms;对含8956×6708像素的航空大面阵图像,正确匹配率为78.13%,识别时间为68.09s.本方法识别率和时间性能均优于加速鲁棒特征算法. In order to recognize targets in images fast and truly,an automatic target recognition method was proposed based on image entropy and speed up robust feature.First,image entropy was computed in different blocks,and regions full of texture were filtered out by threshold.The local key points in regions of interest were extracted by incorporating the Hessian and Harris detectors.Then,feature descriptors were established and principle component analysis was employed to reduce the dimensionality.Finally,nearest neighbor distance ratio classifier was explored in double directions and wrong matches were eliminated by random sample consensus.The experiment results demonstrate that the recognition rates for images in simulation database with varied view-points,scales and illuminations are 87.12%,75.31%and 84.98%,and the computing time is 70.35 ms,71.27 ms and 220.63 ms,respectively.Moreover,the correct matching rate for an aerial large planar array image of 8 956×6 708 pixels is 78.13% and the computing time is 68.09 s.Compared with speed up robust feature,the proposed method performs better both in recognition rates and computing time.
出处 《光子学报》 EI CAS CSCD 北大核心 2015年第2期68-73,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.61308099) 吉林省重大科技攻关专项(No.11ZDGG001)资助
关键词 图像处理 目标自动识别 特征提取 信息熵 分类 Image processing Automatic target recognition Feature extraction Information entropy Classification
  • 相关文献

参考文献13

  • 1LOWE D G. Distinctive image feature from scale invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110.
  • 2MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 3YAN K, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]. Computer Vision and Pattern Recognition,2004:506-513.
  • 4BAY H, TUYTELAARS T, GOOL L V. SURF: Speed-up robust features[C]. Proceedings of the 9th European Conference on Computer Vision,2006:404-417.
  • 5LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: Binary robust invariant scalable keypoints[C]. International Conference on Computer Vision,2011:2548-2555.
  • 6ALAHI A, ORTIZ R, VANDERGHEYNST P. Freak: Fast retina keypoint[C]. Computer Vision and Pattern Recognition,2012:510-517.
  • 7翟优,曾峦,熊伟.不同局部邻域划分加速鲁棒特征描述符的性能分析[J].光学精密工程,2013,21(9):2395-2404. 被引量:10
  • 8黄伟国,顾超,朱忠奎.用于目标识别的PCA-SC形状匹配算法[J].光学精密工程,2013,21(8):2103-2110. 被引量:16
  • 9李小昌,朱丹.采用尺度不变特征和区域选择的图像配准方法[J].红外与激光工程,2012,41(2):537-542. 被引量:16
  • 10HARRIS C, STEPHENS M. A combined corner and edge detector[C]. Proceedings of the Fourth Alvey Vision Conference,1988:147-151.

二级参考文献31

  • 1朱庆,吴波,万能,徐志祥,田一翔.具有良好重复率与信息量的立体影像点特征提取方法[J].电子学报,2006,34(2):205-209. 被引量:14
  • 2Lowe David G.Distinctive Image features from scale-invariant keypoints[J].International Journal of ComputerVision,2004,2(60):91-110.
  • 3Yan Ke,Rahul Sukthankar.PCA-SIFT:a more distinctiverepresentation for local image descriptors[C]//Proc ConfComputer Vision and Pattern Recognition,2004:511-517.
  • 4Mikolajczyk K,Schmid C.A performance evaluation of localdescriptors[C]//Proceedings of Computer Vision and PatternRecognition,2003.
  • 5Herbert Bay,Andreas Ess,Tinne Tuytelaars,et al.Speeded-up robust feature[J].Computer Vision and ImageUnderstanding,2008,110:346-359.
  • 6Simard P,Bottou L,Haffner P,et al,Boxlets:a fastconvolution algorithm for signal processing and neuralnetworks[M].NIPS,1998.
  • 7http://www.robots.ox.ac.uk/-vgg/research/affine.
  • 8http://web.engr.oregonstate.edu/-hes/.
  • 9ZHANG D,LUG.Review of shape representation and description techniques[J].Pattern Recognition,2004,37(1):1-19.
  • 10EDWARD H,ALVARO C,MARTIAL H.Making specific features less discriminative to improve point-based 3D object recognition[C].IEEE International Conference on Compurter Vision and Pattern Recognition,2010:2653-2660.

共引文献78

同被引文献28

  • 1高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 2Li C L, Ma L Z. A new framework for feather descriptor based on SIFT [J]. Pattern Recognition Letters,2009,30:544-557.
  • 3Lowe D G. Distinctive Image Features from Scale-Invariant Key- points [ J ]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 4Gilinsky A, Manor L Z. SIFTpack: a compact representation for efficient SIFT matching [ C ]//Proceedings of the IEEE Interna- tional Conference on Computer Vision. Sydney: IEEE Computer Society ,2013:777-784.
  • 5LIM F L, WEST G A W, VENKATESHS. Use of log polar space for foveation and feature recognition [ J ]. IEEE, 1997,144 (6) :323-331.
  • 6CHEN Q S,DEFRISE M,DECONINCK F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16 ( 12 ) : 1156- 1168.
  • 7VON G R,JAKUBOWICZ J,MOREL J,et al.. Lsd:a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32 (4) : 722-732.
  • 8张叶,曲宏松,王延杰.运用旋转无关特征线实现景象匹配[J].光学精密工程,2009,17(7):1759-1765. 被引量:7
  • 9于丽莉,戴青.一种改进的SIFT特征匹配算法[J].计算机工程,2011,37(2):210-212. 被引量:45
  • 10李壮,朱宪伟.基于边缘相似性的异源图像匹配[J].飞行器测控学报,2011,30(2):37-41. 被引量:4

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部