期刊文献+

基于数据挖掘技术的学生校园消费行为分析 被引量:11

Students consumption behavior analysis based on the data mining technologies
下载PDF
导出
摘要 校园一卡通系统通过对各种信息、资源的有效集成、整合和优化,能够实现学校对信息的有效配置和充分利用。文章采用数据挖掘技术针对学生校园消费活动的管理分析方面进行深入研究,首先通过数据预处理技术提取相关消费特征,并采用一种优化的K-means聚类算法,将学生分为几类,分析行为特征,以便高校学生工作人员分门别类的进行学生管理,最后将聚类结果输入决策树分类模型进行评估,以评价聚类结果。 With effective integration and optimization to variety of resources, the campus card system(CCS) makes efficient allocation and full use of campus information. management analysis of students' consumption activities is studied through data mining. We use date preprocessing techniques to extract relevant consumer characteristics and an optimized k-means clustering algorithm to divide students into several categories. At last we use the decision tree algorithm to judge the clustering results. The analysis of the behavior characteristics can lead to a better management of students for college staffs.
作者 姜楠 许维胜
出处 《大众科技》 2015年第1期26-28,39,共4页 Popular Science & Technology
关键词 数据挖掘 K-MEANS算法 一卡通消费数据 行为特征 决策树 Data mining k-means e-card consumer data behavior characteristics decision tree
  • 相关文献

参考文献1

二级参考文献7

共引文献12

同被引文献68

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部