摘要
研究具有Log型惩罚函数的稀疏正则化,给出一种新的非凸变量选择及压缩感知策略,提出一种高效快速阈值迭代算法.并通过变量选择问题和稀疏信号重建验证了所提出的Log型稀疏正则化模型的有效性.
We study a sparse regularization approach with a Log type penalty function. A new strategy of nonconvex variable selection and compressive sensing is proposed with a alternative thresholding algorithm for fast solution. Then we use variable selection experiment and signal recovery experiment to prove the validity of the sparse regularization with Log type penalty.
出处
《纯粹数学与应用数学》
2015年第1期27-35,共9页
Pure and Applied Mathematics
基金
国家自然科学基金(11171272)
关键词
压缩感知
阈值迭代算法
稀疏性
compressive sensing
iterative thresholding algorithm
sparsity