期刊文献+

E.Ghys猜想的注记 被引量:1

The remark on E.Ghys conjecture
下载PDF
导出
摘要 通过类比自治动力系统中拓扑熵指数收敛的定义,给出了非自治拓扑熵指数收敛的定义及非自治Lipschitz系统中E.Ghys猜想成立的充分条件与必要条件,推广了自治动力系统中的相关结论. In this paper, through analogy to the definition of topology entropy exponential convergence of the automomous dynamical system, we obtain the nation of nonautonomous topological entropy exponential convergence, and we also give the sufficient condition and the necessity condition of E.Ghys conjecture in the nonautonomous Lipschitz dynamical systems, such that we expand the related solution of application of the automomous dynamical system.
作者 郭亚晓 杨将
出处 《纯粹数学与应用数学》 2015年第1期65-72,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11301417)
关键词 非自治动力系统 拓扑熵 熵维数 Lipschitz系统 nonautonomous dynamical systems topological entropy entropy dimension Lipschitz system
  • 相关文献

参考文献6

  • 1Adler R L, Konheim A G, McAndrew M H. Topological entropy [J]. Trans. Amer. Math. Soc., 1965,114:309- 319.
  • 2Bowen R. Topological entropy and Axiom A [J]. Proc. Sympos. Pure. Math., 1971,14:23-42.
  • 3Kushnirenko A G. An upper bound for the entropy of a classical system {J]. Dokl. Akad. Nauk. SSSR., 1965,161:360-362.
  • 4Saltykov P S. On the relation between topological entropy and entropy dimension [J]. Matematicheskie Zametki, 2009,86:280-289.
  • 5Zhu Yujun. Entropy of nonautonomous dynamical systems {J]. J. Korean Math. Soc., 2012,1:165-185.
  • 6Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications [M]. America: Wiley, 2013.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部