期刊文献+

基于神经网络平台的牡蛎肉超高压杀菌工艺条件优化 被引量:3

Study on the processing optimization of ultra high pressure sterilization from oyster meat base on a neural network method
下载PDF
导出
摘要 为研究超高压对牡蛎杀菌的影响,利用Box-Behnken实验设计建立数据集,以菌落总数为参考指标,借助JMP7.0软件的神经网络平台建立神经网络模型,优化牡蛎肉超高压杀菌处理工艺条件。实验结果表明,牡蛎肉超高压杀菌的最佳工艺条件为压力350MPa,保压时间20min,处理温度30℃,在此条件下超高压处理后的牡蛎肉菌落总数从3.2718lg cfu/g减少到2.44342lg cfu/g(灭菌率85.13%),大肠菌群从7MPN/100g减少至0。验证实验结果表明,所建立的神经网络模型具有较好的预测能力,可准确地预测杀菌效果,预测值与实验值的相对误差较小(0.201%)。 The results showed that the best process condition was the pressure was 350MPa for 20min and the temperature was 30℃,the oyster meat total bacteria after pressure treatment in this condition decreased from 3.2718 to 2.443421g cfu/g(The sterilization rate was 85.13%),and Coliforms decreased from 7 to 0(MPN/100g). Validation test results showed that the established neural network model had better prediction ability which could accurately predict the sterilization effect,and the relative error of predicted values and experimental values was small(0.201%).
出处 《食品工业科技》 CAS CSCD 北大核心 2015年第6期257-261,共5页 Science and Technology of Food Industry
基金 现代农业产业技术体系建设专项资金资助(CARS-48-07B) 广东省科技厅(2010B020201014) 国家星火计划十二五重大与重点项目
关键词 牡蛎 超高压 杀菌 神经网络 oyster ultra high pressure sterilization neural network
  • 相关文献

参考文献16

二级参考文献143

共引文献135

同被引文献53

  • 1颜军,郭晓强,邬晓勇,徐光域,苟小军.银耳多糖的提取及其清除自由基作用[J].成都大学学报(自然科学版),2006,25(1):35-38. 被引量:67
  • 2田晓琴,宋社果.超高压对鲜牛奶杀菌效果研究[J].安徽农业科学,2006,34(17):4397-4398. 被引量:19
  • 3章银良,夏文水.超高压对腌鱼保藏的影响[J].安徽农业科学,2007,35(9):2636-2638. 被引量:14
  • 4庞涛涛,姚建斌,杜黎明.人工神经网络分类鉴别苦丁茶红外光谱[J].光谱学与光谱分析,2007,27(7):1336-1339. 被引量:18
  • 5Du X,Zhang J,Lv Z,et al.Chemical modification of an acidic polysaccharide(TAPA1)from Tremella aurantialba and potential biological activities[J].Food Chemistry,2014,143(1):336-340.
  • 6Zhang Z,Wang X,Zhao M,et al.Free-radical degradation by Fe2+/Vc/H2O2and antioxidant activity of polysaccharide from Tremella fuciformis[J].Carbohydrate Polymers,2014,112(11):578-582.
  • 7Shi Z,Liu Y,Xu Y,et al.Tremella Polysaccharides attenuated sepsis through inhibiting abnormal CD4+CD25highregulatory T cells in mice[J].Cell Immunol,2014,288(2):60-65.
  • 8Xiccato G,Trocino A,Tulli F,et al.Prediction of chemical composition and origin identification of european sea bass(Dicentrarchus labrax L.)by near infrared reflectance spectroscopy(NIRS)[J].Food Chemistry,2004,86(2):275-281.
  • 9Marini F,Bucci R,Magri AL,et al.Artificial neural networks in chemometrics:History,examples and perspectives[J].Microchemical Journal,2008,88(2):178-185.
  • 10Marini F.Artificial neural networks in food stuff analyses:Trends and perspectives a review[J].Analytica Chimica Acta,2009,635(2):121-131.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部