期刊文献+

一种充分下降的CD共轭梯度法及其收敛性 被引量:2

A Sufficiently Descent CD Conjugate Gradient Method and Its Convergence
下载PDF
导出
摘要 基于已有的CD方法,提出了一种改进的CD共轭梯度法(MCD算法).该算法产生的搜索方向为充分下降方向,且这一性质与所采用的线搜索方法无关;并在一定的条件下证明了该算法基于Wolfe线搜索求解非凸优化问题的全局收敛性. Based on CD method,this paper proposes a modified CD conjugate gradient method( MCD method),the search direction generated by this algorithm is sufficiently descent direction and this property is nothing to do with the used line search method,and under certain condition,the solution to the global convergence of non-convex-optimization problem based on Wolfe line searching is proved.
作者 马烁 王安平
出处 《重庆工商大学学报(自然科学版)》 2015年第1期1-4,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 湖北省教育科学"十二五"规划课题(2012B310) 长江大学工程技术学院基金(13J0802)
关键词 无约束最优化 共轭梯度法 WOLFE线搜索 全局收敛性 unconstrained optimality conjugate gradient method Wolfe line searching global convergence
  • 相关文献

参考文献9

  • 1FLETCHER R, REEVES C.Function Minimization by Conjugate Gradients [ J ]. Computer Journal, 1964 (7) :149-154.
  • 2POLAK E, RIBIERE G.Note Sur La Convergence De Dirctions Conjugees [ J] .Rev Fran-caise Informat Recherche Opertionelle, 3e Annee, 1969(16) :35-43.
  • 3HESTEMES M R, SRIEFEL E L.Methods of Conjugate Gradient for Solving Linear Systems [ J ] .Journal of Research of the National Bureau of Standards, 1952,6 (49) : 40-43.
  • 4FLETCHER R.Practical Methods Optimization[ C ]//Unconstrained optimization.New York:John Wiley&sons, 1987.
  • 5LIU Y, STOREY C.Effcient Generalized Conjugate Gradient Algorithms [ J ]. Journal of Optimiztion Theory and Applicatons, 1991 (69) : 129-137.
  • 6DAI Y H, YUAN Y.A Nonlinear Conjugate Gradient with a Strong Global Conver-gence Property[ J ] .SIAM Journal on Optimizton, 2000(10) : 177-182.
  • 7敖卫斌.一种修正的DY共轭梯度法的全局收敛性[J].重庆工商大学学报(自然科学版),2013,30(10):17-20. 被引量:3
  • 8HAGER WILLIAM W, ZHANG HCH.A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search [ J ].SIAM Journal on Optimization, 2005,16 ( 1 ) : 170- 92.
  • 9MORE J J, GARBOW B S,HILLSTROME K E.Testing Unconstrained Optimization Software[ J] .ACM Trans Math sofetware, 1981 (7) :17-41.

二级参考文献10

  • 1SHI Z J. Convergence of line search methods for unconstrained optimization [ J ]. Applied Mathematics andComputation, 2004 (157) :393-405.
  • 2FLETCHER R, REEVES C. Function minimization by conjugate gradients[ J]. Computer Journal, 1964(7) :149-154.
  • 3POLAK E , RIBIERE G. Note sur la convergence de directions conjugees [ J ]. Rev Francaise InformatRecherche OperatineUe, 3e Annee, 1969(16): 35-43.
  • 4POLAKB T. The conjugate gradient method in extremem problems [ J ]. USSR Comp Math and Math. Phys. 1969(9) : 94-112.
  • 5HESTENES M R, STEIFEL E L. Methods of conjugate gradients for solving linear systems [ J ]. J Res Nat Bur Standards Sect. 1952, 5(49): 409-436.
  • 6LIU Y, STIEFELC. Efficient generalized conjugate gradient algorithms[J] .JOTA, 1991, 69(1) : 129-152.
  • 7DAI Y, YUAN Y. A nonlinear conjugate gradient with a strong global convergence property [ J ]. SIAM Journal on Optimization, 1999, 10(1): 177-182.
  • 8FLETCHER R. Practical methods of optimization [ M]. New York: Unconstrained Optimization, 1987.
  • 9ZHANG L, ZHOU W.LI D. Global convergence of a modified Fletcher-Reeves conjugate gradientmethod method with Armijo-type line search [ J ]. Numerische Mathematik 2006,104 (4) : 561-572.
  • 10MORE J,GARBOW B,HII.J.SU'ROMK E. Testing unconstrained optimization software[ J].ACM Trans,Math.Software,1981,7(1) :17-41.

共引文献2

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部