期刊文献+

时滞Lorenz-like系统的Hopf分岔研究 被引量:4

Research on Hopf Bifurcation of Lorenz-like Delay System
下载PDF
导出
摘要 随动力系统学的发展,平衡点的稳定性以及Hopf分岔对于动力系统学研究愈显重要。首先研究时滞Lorenz-like系统存在平衡点的条件,在此条件下,通过分析系统在平衡点处的线性化系统特征根的分布情况,得出系统在平衡点处的稳定性;随着系统时滞参数的变化,时滞系统在平衡点处稳定性相应地会发生改变;以时滞为分岔参数,研究了时滞系统存在Hopf分岔的条件;最后利用Matlab程序进行仿真,验证了理论分析的正确性。 With the development of power system,the stability of the equilibrium point and Hopf bifurcation are more and more important to the research on power system. This paper at first studies the condition for the equilibrium point existence in Lorenz-like delay system. Under this condition,the stability of the system at the equilibrium point is obtained by the analysis of the characteristic root distribution of the linearized system at the equilibrium point of the system. With the changing of delay parameters of the system,the stability of the delay system at the equilibrium point can change corresponding,and the condition for the existence of Hopf bifurcation of this delay system is studied by taking delay as bifurcation parameter. Finally the simulation by Matalb program tests the validity of the theoretical analysis.
出处 《重庆工商大学学报(自然科学版)》 2015年第2期11-16,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 高等学校博士学科点专项基金(20093401120001) 安徽省自然科学基金(11040606M12) 安徽大学"211项目"(KJJQ1102)资助项目
关键词 Lorenz-like时滞系统 稳定性 极限环 HOPF分岔 Lorenz-like delay system stability limit cycle Hopf bifurcation
  • 相关文献

参考文献9

  • 1TAN C W, VARGHESE N, VARAIYA P. Bifurcation chaos and vohage collapse in power systems [ J ] .Proceedings of the IEEE, 1995,83 : 1484-1496.
  • 2王庆红,周双喜.电力系统奇异摄动模型霍普夫分岔分析[J].中国电机工程学报,2003,23(8):1-6. 被引量:12
  • 3HASSARD B, KAZARINOFF N, WAN Y. Theory and Application of Hopf Bifurcation [ M ]. Cambridge : Cambridge University Press, 1982.
  • 4ROSSLER Q E.An equation for continuous chaos [ J ] .Phys Lett A, 1976,57:397-398.
  • 5CHEN G, UETA T.Yet another chaotic attractor[ J] .International Journal of Bifurcation and Chaos, 1999(9) :1465-1466.
  • 6LIU C, LIU T, LIU L. A new chaotic attractor [ J ]. Chaos, Solitons &Fractals, 2004,22:1031-1038.
  • 7TIGAN G.Analysis of a 3D chaotic system[ J].Chaos,Solitons & Fractals,2008,36:1315-1319.
  • 8MELLO L F,MESSIAS M ,BRAGA D C.Bifurcation analysis of a new Lorenz-like chaotic system [J] .Chaos,Solitons & Fractals, 2008,37 : 1244-1255.
  • 9马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2005.

二级参考文献12

  • 1Venkatasubramanian V,Schattler H,Zaborsxky J.A stability theory of large differential algebraic systems,a taxonomy[C].No SSM 9201 Part 1,1992,technial report,Washington University,Washington,USA.
  • 2DeMarco C L,Bergen A R.A security measure for random losd disturbances in nonlinear power system models[J].IEEE CAS Part I,1987,34(12):1546-1557.
  • 3Baer S M,Emeux T.Singular hopf bifurcation to relaxation oscillations[J].SIMA Applied Mathematics,1986,52(6):1651-1664.
  • 4Stiefenhofer M.Singular perturbation with limit points in the fast dynamics[J].ZAMP,1998,49(65):730-758.
  • 5Dobson I,Chiang H D. Towards a theory of voltage collapse in electric power systems[J].System and Control Letters, 1989,13: 253-262.
  • 6Fenichel N. Geometric singular perturbation theory for ordinary equations[J]. Differential Equations,1979,31: 53-98.
  • 7Carr J.Applications of centre manifold theory[M].Berlin:Springer Verlag,1981.
  • 8Kwatany H G,Pasrija A K,Bahar L Y.Static bifurcations in electric power networks:loss of steady state stability and voltage collapse[J].IEEE Transactions on Circuits and Systems,1986,33(10):981-991.
  • 9Chua L O.Impasse points,part Ⅱ.Analytical aspect[J].International Journal of Circuit Theory and Applications,1989,17:271-282.
  • 10Rabier P J,Rheinboldt W C.On impasse points of quasilinear differential algebraic equation[J].Mathematics Analysis and Applications,1994,181:429-454.

共引文献21

同被引文献27

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部