期刊文献+

基因组高通量测序数据结构变异识别算法

Structural Variation Detection Algorithm in High-throughput Sequencing Data
下载PDF
导出
摘要 遗传变异是生命的基本特征,遗传变异与表型差异之间的关系,是现代生物学的一个基本问题。由基因决定生物体的遗传特征和主要个体差异的观念正在逐渐改变,过去几年的许多研究显示,基因组中大尺度的结构变异与个体的表型差异和疾病等有一定的关联。有关遗传变异和表型多样性的研究,需要比较生物体个体基因组间的各种不同。利用NGS数据全面分析结构变异的技术目前仍然不成熟。因此本文根据生物学知识,利用高通量测序数据,对植物基因组结构变异的识别问题深入系统的研究,提出新的结构变异识别方法和精确的断点预测方法。 Structural variations are genomic rearrangements that contribute significantly to evolution,natural variation between organisms,and are often involved in biological phenotypes and genetic disorders.Traditional microscope and array based methods are used for the detection of larger events or copy number variations.Next generation sequencing has enabled the detection of all types of structural variants from genome accurately.In practice,a significant challenge lies in the development of computational methods that are able to identify these structural variants based on the generated high-throughput sequencing data.In this project,the paper focuses on the design and implementation of the algorithms for multiple donor plant genomic structural variation identification with the combination of assembly,pair end mapping,split read and depth of coverage analyzing.
出处 《智能计算机与应用》 2015年第1期1-4,8,共5页 Intelligent Computer and Applications
基金 国家自然科学基金(91335112 61172098 61271346 61402132) 高等学校博士学科点专项科研基金(20112302110040) 中央高校基本科研业务费专项资金(HIT.KISTP.201418)
关键词 高通量测序 遗传变异 结构变异 断点预测 High-Throughput Sequencing Genetic Variation Structural Variation Breakpoint Prediction
  • 相关文献

参考文献17

  • 1CRADDOCK N, Wellcome Trust Case Control Consortium, CRAD- DOCK N, et al. Genome -wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls [ J ]. Na- ture, 2010, 464(7289) : 713 - 720.
  • 2ABECASIS G R, ALTSHULER D, AUTON A, et al. A map of hu- man genome variation from population - scale sequencing [ J ]. Na- ture, 2010, 467(7319) :1061 - 1073.
  • 3周雪崖,张学工.基于拷贝数变异的遗传关联研究[J].科学通报,2011,56(6):370-382. 被引量:5
  • 4TREANGEN T J, SALZBERG S L. Repetitive DNA and next - gen- eration sequencing: computational challenges and solutions [ J ]. Na- ture reviews. Genetics, 2012, 13(1 ) :36 - 46.
  • 5FEUK L, CARSON A R, SCHERER S W. Structural variation in the human genome [ J ]. Nature reviews. Genetics, 2006, 7 ( 2 ) : 85 - 97.
  • 6Le ROUZIC A, BOUTIN T S, CAPY P. Long - term evolution of transposable elements [ J ]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49) :19375 - 19380.
  • 7SPRINGER N M, YING K, FU Y, et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence varia- tion (PAV) in genome content [ J]. PLoS genetics, 2009, 5 (11 ): e1000734.
  • 8HAUN W J, HYTEN D L, XU W W, et al. The composition and ori- gins of genomic variation among individuals of the soybean reference cultivar Williams 82 [J].Plant physiology, 2011, 155 ( 2 ) : 645 - 655.
  • 9MCI-IALE L K, HAUN W J, XU W W, et al. Structural variants in the soybean genome localize to clusters of biotic stress - response genes[ J]. Plant ohysiolo~, 2012, 159(4) :1295 - 1308.
  • 10QI J, ZHAO F. inGAP - sv : a novel scheme to identify and visual- ize structural variation ii'om paired end mapping data [ J ]. Nucleic acids research, 2011, 39(Web Server issue) :W567 - 575.

二级参考文献105

  • 1McCarroll S A, Kuruvilla F G, Korn J M, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet, 2008, 40:1166-1174.
  • 2McCarroll S A, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet, 2008, 40:1107-1112.
  • 3Wilier C J, Speliotes E K, Loos R J, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet, 2009, 41:25-34.
  • 4de Cid R, Riveira-Munoz E, Zeeuwen P L, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet, 2009, 41:211-215.
  • 5Ardlie K G, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet, 2002, 3:299-309.
  • 6Schrider D R, Hahn M W. Lower linkage disequilibrium at CNVs is due to both recurrent mutation and transposing duplications. Mol Biol Evol, 2010, 27:103-111.
  • 7Kato M, Kawaguchi T, Ishikawa S, et al. Population-genetic nature of copy number variations in the human genome. Hum Mol Genet, 2010, 19:761-773.
  • 8Jakobsson M, Scholz S W, Scheet P, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 2008. 451:998-1003.
  • 9Xue Y, Sun D, Daly A, et al. Adaptive evolution of UGT2B17 copy-number variation. Am J Hum Genet, 2008, 83:337-346.
  • 10Perry G H, Dominy N J, Claw K G, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet, 2007, 39: 1256-1260.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部