期刊文献+

平面两凸域的Bonnesen型对称混合不等式 被引量:4

On Bonnesen-style symmetric mixed inequality of two planar convex domains
原文传递
导出
摘要 本文利用积分几何中的Poincare运动公式和Blaschke运动公式估计平面上两域K_0和k_1的对称混合等周亏格△_2(K_0,K_1),得到了对称混合等周不等式和一些Bonnesen型对称混合不等式,其中一个不等式加强了Kotlyar的不等式.此外我们还得到了一些逆Bonnesen型对称混合不等式,其条件比著名的Bottema不等式的弱. We investigate the symmetric mixed isoperimetric deficit △2 (K0, K1) of domains K0 and K1 in the Euclidean plane R2 via the known kinematic formulas of Poincar6 and Blaschke in integral geometry. Then we obtain symmetric mixed isoperimetric inequality and some Bonnesen-style symmetric mixed inequalities. One of those inequalities strengthens Kotlyar's inequality. Finally, we obtain some reverse Bonnesen-style symmetric mixed inequalities that generalize the known Bottema's result.
出处 《中国科学:数学》 CSCD 北大核心 2015年第3期245-254,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271302) 高等学校博士学科点专项科研(博导类)基金(批准号:20120182110020)资助项目
关键词 对称混合等周亏格 对称混合等周不等式 Bonnesen型对称混合不等式 逆Bonnesen型对称混合不等式 symmmetric mixed isoperimetric deficit, symmetric mixed isoperimetric inequality, Bonnesen-style symmmetric mixed inequality, reverse Bonnesen-style symmmetric mixed inequality
  • 相关文献

参考文献3

二级参考文献22

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 3Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 4Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 5Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 6Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 7Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 8Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 9Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 10Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.

共引文献51

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部