期刊文献+

基于KPCA-SVM的预测模型在铀矿堆浸中的应用 被引量:2

The Application of Heap Leaching of Uranium Based on KPCA-SVM
下载PDF
导出
摘要 针对影响堆浸工艺铀矿浸出率的因素较多且具有非线性的特点,提出一种利用核主成分分析(KPCA)进行参数处理,整合冗余,降低维数,并将处理后得到的6个主成分作为支持向量机(SVM)测量模型输入的预测方法。在此过程中,利用粒子群算法(PSO)优化核主成分分析和支持向量机的参数,使模型具有较高的训练精度。在此基础上,对铀矿堆浸进行建模仿真,并进行预测。结果表明,基于KPCA-SVM的铀矿累计浸出率模型与BP神经网络方法相比,具有有效降低数据维数、在小样本条件下学习更加有效、建模采样过程更快、预测精度更高的优点。 Aiming at the features of factors which is non-linear and influence heap leaching of uranium leaching rate,then we proposed a measure that using the kernel principal component analysis( KPCA) to process parameters. It can reduce redundancy and lower dimensions,then we can get 6principal components as a predictive method to measure inputs of model by support vector machines( SVM). In this process,the particle swarm optimization( PSO) is used to optimize the parameters of kernel principal component analysis and support vector machines,so that the model has higher training accuracy. Based on that,we built a model of the heap leaching uranium to simulate and forecast.The results show that,compared KPCA-SVM cumulative uranium leaching rate model with BP neural network method,the former can effectively reduce data dimension,learn more effectively in small samples,model the sampling process faster and has a higher predictive accuracy.
出处 《江西科学》 2015年第1期106-111,共6页 Jiangxi Science
基金 核资源与环境省部共建国家重点实验室培育基地资助项目(101116)
关键词 累计铀浸出率 预测 核主成分分析 支持向量机 粒子群算法 cumulative uranium leaching rate forecast kernel principal components analysis support vector machines particle swarm optimization
  • 相关文献

参考文献7

二级参考文献32

共引文献40

同被引文献33

  • 1刘胜昔,程春玲.改进的Gabor小波变换特征提取算法[J].计算机应用研究,2020,37(2):606-610. 被引量:25
  • 2冼广淋,骆雪超,肖宇峰.统计学习理论与支持向量机[J].中国科技信息,2005(12C):178-178. 被引量:9
  • 3谭廷栋.裂缝性地层侧向测井解释新方程.地球物理学报,1983,26(6):588-596.
  • 4李厚义 丘琳.碳酸盐岩三种孔隙结构测井解释模型及应用.测井技术,1984,18(3):1-5.
  • 5吴庆岩,张爱军译.测井解释常用岩石矿物手册[M].北京:石油工业出版社,1998.
  • 6Aguilera R.Analysis of naturally fractured reservoir from conventional well logs[J].Journal of Petroleum Technology,1976,28(7):764-772.
  • 7Blabbing R M,Lomakina E I.Support vector machine regression(SVR,LS-SVM)-an alternative to Neural networks(ANN)for analytical chemistry.Comparison of nonlinear methods on near infrared(NIR)spectroscopy data[J].Analyst,2011,136(8):1703-1712.
  • 8Vapnik V,Mukherjee S.Support vector method for multivariate density estimation[M].MA,USA:MIT Press,2000:138-167.
  • 9Vapnik V.The nature of statistical learning theory[M].Beijing:Tsinghua University Press,2000:96-116.
  • 10张国英,王娜娜,张润生,马兵胜.基于主成分分析的BP神经网络在岩性识别中的应用[J].北京石油化工学院学报,2008,16(3):43-46. 被引量:29

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部