期刊文献+

基于早期数据的航天测控软件缺陷预测

Prediction of Defects of Space TT&C Software Based on Early Life-Cycle Data
下载PDF
导出
摘要 为提高航天测控软件的质量与可靠性,提出一种基于改进的PSO-SVM(Particle Swarm Optimization-Support Vector Machine,粒子群优化支持向量机)方法的航天测控软件缺陷预测模型。针对航天测控软件领域特征,构造了基于软件生命周期的软件度量集,并收集了实际航天测控软件的度量和缺陷数据,通过对软件历史版本数据的学习,在软件当前版本的生命周期早期数据的基础上进行缺陷预测。实例应用结果表明,采用历史版本软件数据对当前软件版本进行缺陷预测,从全局来看可达90%的预测准确度。因此,该方法可用于对航天测控软件的缺陷预测。 To ensure the quality and reliability of space TT&C (Tracking, Telemetry and Command) software, a software defect prediction model using improved PSO-SVM (Particle Swarm Optimization-Support Vector Machine) algorithm is presented. Software metrics based on life-cycle are constructed according to the area characteristics of TT&C software. Actual TT&C software metrics and defect data are measured and learned by the prediction model. Application results over the early version data in the life-cycle of the current version show that the proposed TT&C software defect prediction model reaches a global prediction accuracy of 90%. Therefore, it is applicable for defect prediction for space TT&C software.
出处 《飞行器测控学报》 CSCD 2015年第1期102-108,共7页 Journal of Spacecraft TT&C Technology
关键词 软件缺陷 缺陷预测 粒子群优化支持向量机(PSO-SVM) 航天测控 软件度量 software defect defect prediction Particle Swarm Optimization-Support Vector Machine (PSO-SVM) space Tracking,Telemetry and Command (TT&C) software software metrics
  • 相关文献

参考文献13

  • 1司倩然,张慧颖,闫国英.基于缺陷分析的软件测试有效性评估方法[J].计算机工程与设计,2013,34(3):915-919. 被引量:1
  • 2Shepperd M, Song Q, Sun Z, et al. Data quality: some com- ments on the nasa software defect data sets[J]. IEEETrans- actions on Software Engineering, 2013, 39(9): 1208-1215.
  • 3Gray D, Bowes D, Davey N, et al. Reflections on the NASA MDPdata sets[J]. IET Software, 2012, 6(6): 549- 558.
  • 4Khoshgoftaar T M, Gao K, Napolitano A, et al. A compara- tive study of iterative and non-iterative feature selection tech- niques for software defect prediction[J]. Information Systems Frontiers, 2013, 16(5): 1-22.
  • 5Zimmermann T, Premraj R, Zeller A. Predicting defects for eclipse[C] // PROMISE' 07 Proceedings of the 3th Interna- tional Conference on Predictor Models in Software Engineer ing, Minneapolis, 2007: 9.
  • 6Punitha K, Chitra S. Software defect prediction using soft- ware metrics-A survey[C] // International Conference on In- formation Communication and Embedded Systems. Chennai, 2013: 555-558.
  • 7Lenin R B, Govindan R B, Ramaswamy S. Predicting bugs in distributed large scale software systems development[J]. SCS M&S Magazine, 2010, 4(2) : 1-5.
  • 8吴超,许建平,陈丽容.基于生命周期的软件缺陷预测技术[J].计算机工程与设计,2009,30(12):2956-2959. 被引量:7
  • 9Wahyudin D, Schatten A, Winkler D, et al. Defect predic- tion using combined product and project metrics: a case study from the open source "Apache" MyFaces project family[C]// Proceedings of Software Engineering and Advanced Applica- tions. Parma, 2008: 207-215.
  • 10Shuo Wang, Xin Yao. Using class imbalance learning for software defect prediction[J]. IEEE Transactions on Relia- bility, 2013, 62(2):434-443.

二级参考文献13

  • 1司倩然,闫国英.航天测控软件缺陷管理与分析系统设计[J].飞行器测控学报,2010,29(6):54-59. 被引量:4
  • 2Ljubomir Lazic, Nikos Mastorakis. Orthogonal array applica- tion for optimal combination of software defect detection tech- niques choices [J]. WSEAS Transactions on Computers, 2008, 7 (8): 1319-1336.
  • 3Suma V, Gopalakrishnan Nair T R. Effective defect prevention approach in software process for achieving better quality levels [C] //Proceedings of World Academy of Science, Engineering and Technology. Rome, Italy: arXiv e-print, 2008: 258-262.
  • 4Raymond Madaehy, Barry Boehm. Assessing quality processes with ODC COQUALMO [C] //Proceedings of the Software Process International Conference on Making Globally Distribu- ted Software Development a Success Story, 2008.
  • 5Ram Chillarege. ODC measurement and analysis - industry ap- plications [R]. Chillarege Inc, 2007 : 11-13.
  • 6IBM Research. Center for software engineering details of ODC v5.11 [EB/OL]. http: //www. research, ibm. com/softeng/ ODC/DETODC. HTM, 2009.
  • 7Mockus A Nagappan, Dinh Trong N T T. Test coverage and post- verification defects: A multiple case study [C] //Proceedings of 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL: IEEE, 2009: 291-301.
  • 8Chillarege R. Understanding bohr-mandel bugs through O13(2 triggers and a case study with empirical estimations of their field proportion [C] //Proceedings of IEEE Third International Workshop on Software Aging and Rejuvenation. Hiroshima: IEEE, 2011: 7-13.
  • 9SI Qianran, YAN Guoying. Research on quality assurance method based on software defect baseline [C] //Proceedings of 3rd International Conference on Computer and Network Technology. Haerbin, China: IEEE, 2011 : 861-865.
  • 10王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580. 被引量:149

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部