摘要
为提高航天测控软件的质量与可靠性,提出一种基于改进的PSO-SVM(Particle Swarm Optimization-Support Vector Machine,粒子群优化支持向量机)方法的航天测控软件缺陷预测模型。针对航天测控软件领域特征,构造了基于软件生命周期的软件度量集,并收集了实际航天测控软件的度量和缺陷数据,通过对软件历史版本数据的学习,在软件当前版本的生命周期早期数据的基础上进行缺陷预测。实例应用结果表明,采用历史版本软件数据对当前软件版本进行缺陷预测,从全局来看可达90%的预测准确度。因此,该方法可用于对航天测控软件的缺陷预测。
To ensure the quality and reliability of space TT&C (Tracking, Telemetry and Command) software, a software defect prediction model using improved PSO-SVM (Particle Swarm Optimization-Support Vector Machine) algorithm is presented. Software metrics based on life-cycle are constructed according to the area characteristics of TT&C software. Actual TT&C software metrics and defect data are measured and learned by the prediction model. Application results over the early version data in the life-cycle of the current version show that the proposed TT&C software defect prediction model reaches a global prediction accuracy of 90%. Therefore, it is applicable for defect prediction for space TT&C software.
出处
《飞行器测控学报》
CSCD
2015年第1期102-108,共7页
Journal of Spacecraft TT&C Technology
关键词
软件缺陷
缺陷预测
粒子群优化支持向量机(PSO-SVM)
航天测控
软件度量
software defect
defect prediction
Particle Swarm Optimization-Support Vector Machine (PSO-SVM)
space Tracking,Telemetry and Command (TT&C) software
software metrics