期刊文献+

面向在轨测量任务的伴飞机器人三维仿真系统 被引量:2

3D simulation system of accompany-flying robot for on-orbit measurement
下载PDF
导出
摘要 为了避免空间伴飞机器人末端探测器与自身载体或者与待测航天器之间发生碰撞,在实际进行在轨测量之前,需要对其末端探测器轨迹规划方法进行充分的三维图形仿真.针对现有空间机器人地面仿真系统不能可视化的问题,设计了一种基于虚拟现实技术的三维仿真系统.首先,建立了基于Open Inventor的空间机器人三维实体几何模型,并构建反应空间机器人逻辑位置的三维仿真场景.然后,基于数据传输技术和构建的三维仿真场景建立了空间机器人可视化三维仿真系统.最后,建立空间机器人运动学模型并对空间机器人末端执行器跟踪的圆弧轨迹进行规划.仿真结果表明,利用该系统可直观得到空间机器人的运动过程以及空间机器人载体的运动特性,有利于空间机器人的轨迹规划和控制算法的仿真研究,可避免因不当轨迹规划而造成空间机器人发生碰撞. To avoid the collision between end-probe and space robot carrier or the spacecraft to be tested,3D simulations are required for trajectory planning method of end-probe before the actual on-orbit measurement. In view of the nonvisual problem of the existing simulation system of space robot,a 3D simulation system based on virtual reality technology is designed. First,3D solid model of space robot is established based on Open Inventor,and the 3D scene of space robot logical location is set up. Then,the visual 3D simulation system of space robot is created based on the data transmission technology and 3D scene. Finally,the kinematics model of space robot is established and the circular trajectory of the space robot end-effecter is planned. Simulation results indicate that the motion process of space robot and the motion characteristics of the space robot base can be obtained visually. This system facilitates the simulation study on the method of space robot trajectory planning and control,and avoids the collision of space robot due to improper trajectory planning.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第2期50-54,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(51205090) 中国博士后科学基金(2014M551231) 黑龙江省博士后基金(LRB12-358) 哈尔滨工业大学科研创新基金(HIT.NSRIF.2015008)
关键词 伴飞机器人 在轨测量 地面仿真 虚拟现实 轨迹规划 accompany-flying robot on-orbit measurement ground simulation virtual reality trajectory planning
  • 相关文献

参考文献13

  • 1史建伟,蔡远文,李岩.在轨检测研究综述[J].兵工自动化,2011,30(6):59-62. 被引量:1
  • 2MADISON R W. Micro-satellite based, on-orbit servicing work at the air force research [ C ]//Aerospace Conference Proceedings. Big Sky, Montana: IEEE, 2000:215-225.
  • 3FREDRICKSON S E, DURAN S, MITCHELL J D. MiniAERCam inspection robot for human space missions [ C]//Space 2004 Conference and Exhibit. Sara Diego, California: IEEE, 2004.
  • 4ZARAFSHAN P, ALI S, MOOSAVIAN A. Dynamics modelling and hybrid suppression control of space robots performing cooperative object manipulation [ J ]. Communi-cations in Nonlinear Science and Numerical Simulation, 2013, 18(10) : 2807-2824.
  • 5AMIT K, PUSHPARAJ M P, SUKAVANAMA N. Trajectory control of a two DOF rigid-flexible space robot by a virtual space vehicle [ J ]. Robotics and Autonomous Systems,2013, 61(5): 473-482.
  • 6TORTOPIDIS I, PAPADOPOULOS E. On point-to-point motion planning for underactuated space manipulator systems[ J]. Robotics and Autonomous Systems, 2007, 55(2) : 122-131.
  • 7HU Xiaoping, ZUO Fuyong. Research and simulation of robot trajectory planning in joint space [ J ]. Applied Mechanics and Materials, 2012, 103:372-377.
  • 8KANDIL A A, BADREDDIN E. A new method for direct and point-to-point robot trajectory planning in narrow spaces [ C ]//IEEE International Conference on Control Applications/International Symposium on Intelligent Control. St Petersburg, Russia:IEEE,21309: 1738-1743.
  • 9徐文福,强文义,李成,梁斌,刘宇.自由漂浮空间机器人路径规划研究进展[J].哈尔滨工业大学学报,2009,41(11):1-12. 被引量:8
  • 10邹湘军,孙健,何汉武,郑德涛,陈新.虚拟现实技术的演变发展与展望[J].系统仿真学报,2004,16(9):1905-1909. 被引量:285

二级参考文献120

共引文献299

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部