期刊文献+

基于机器学习的脑网络分析方法及应用 被引量:12

Machine-Learning-Based Brain Network Analysis:Method and Application
下载PDF
导出
摘要 脑网络学习旨在从整体上研究大脑各功能区的交互,对于人类深入了解大脑功能和结构以及对一些脑疾病的诊断都具有非常重要的作用。作为脑网络分析的重要工具,机器学习由于能够从数据中学习规律并对未知数据进行预测,已成为近年来脑网络分析领域一个新的研究热点。本文综述了近年来基于机器学习技术在脑网络分析中的典型研究方法和应用,主要从网络的构建、特征学习和分类预测等3个方面加以介绍。最后,总结全文并展望未来研究方向。 Brain network aims to study the interaction of brain functional regions as a whole system,which plays a very important role for the understanding of brain function and structure,as well as the diagnosis of some brain diseases.As an important tool to analyze brain networks,machine learning has become a new focus of research since,and it can obtain the rules via automatically analyzing data and apply these rules to predict the unknown data.This paper reviews the concepts,methods and applications of brain network analysis,and mainly discusses some related works based on machine learning techniques from the following three aspects,i.e.,construction of bran network,feature learning and classification and prediction.Finally,The conclution is drawed,and some new directions for future research is forecasted.
作者 张道强 接标
出处 《数据采集与处理》 CSCD 北大核心 2015年第1期68-76,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61422204 61473149)资助项目 江苏省杰出青年基金(BK20130034)资助项目 教育部博士点基金(20123218110009)资助项目 南京航空航天大学基本科研业务费(NE2013105)资助项目 安徽省自然科学基金(1508085MF125)资助项目 模式识别国家重点实验室开放课题(201407361)资助项目
关键词 脑网络分析 机器学习 特征学习 核方法 brain network analysis machine learning feature learning kernel method
  • 相关文献

参考文献2

二级参考文献20

  • 1Supekar K,Menon V,Rubin D,et al.Network analysis of intrinsic functional brain connectivity in Alzheimervs disease[J].PLoS Computational Biology,2008,4(6):e1000100.
  • 2Stam C J,Jones B F,Nolte G,et al.Small-world networks and functional connectivity in Alzheimer’s disease[J].Cerebral Cortex,2007,17(1):92-99.
  • 3Watts D J,Strogatz S H.Collective dynamics of small-world networks[J].Nature,1998,393(6684):440-442.
  • 4Saramki J,KivelM,Onnela J P,et al.Generalizations of the clustering coefficient to weighted complex networks[J].Physical Review E,2007,75(2):027105.
  • 5Barthelemy M.Betweenness centrality in large complex networks[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):163-168.
  • 6Chen Gang,Ward B D,Xie Chunming,et al.Classification of Alzheimer disease,mild cognitive impairment,and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J].Radiology,2011,259(1):213-221.
  • 7Wee C Y,Yap P T,Denny K,et al.Resting-state multi-spectrum functional connectivity networks for identification of MCI patients[J].PLoS ONE,2012,7(5):e37828.
  • 8Jie Biao,Zhang Daoqiang,Wee C Y,et al.Topological graph kernel on multiple thresholded functional connectivity networks for MCI classification[J].Human Brain Mapping,2013,doi:10.1002/hbm.22353.
  • 9Kong Xiangnan,Ragin A,Wang Xue,et al.Discriminative feature selection for uncertain graph classification[C]//Proceedings of Computing Research Repository(CoRR),2013:82-93.
  • 10Kong Xiangnan,Yu P S.Multi-label feature selection for graph classification[C]//Proceedings of the 10th IEEE International Conference on Data Mining(ICDM 10),Sydney,Australia,2010.Piscataway,NJ,USA:IEEE,2010:274-283.

共引文献4

同被引文献86

  • 1Herbrieh R, Graepel T, Obermayer K. Support vector learning for ordinal regression[C]//ICANN 99. Ninth International Conference on Artificial Neural Networks. Edinburgh: lET, 1999: 97-102.
  • 2Wu H, Lu H, Ma S. A practical SVM-based algorithm for ordinal regression in image retrieval[C]//Proceedings of the Elev- enth ACM International Conference on Multimedia. New York, USA: ACM, 2003: 612-621.
  • 3Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neu- roimage, 2011, 55(3): 856-867.
  • 4Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images[C]//Pattern Recog- nition (ICPR), 2010 20th International Conference on. Washington D C,USA: IEEE, 2010: 3396-3399.
  • 5Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]//Computer Vi-sion and Pattern Recognition (CVPR), 2011 IEEE Conference on. Washington D C,USA: IEEE, 2011: 585-592.
  • 6Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[J]. Fundam Inform, 2001, 47 (1/2), 1-13.
  • 7Cardoso J S, Da Costa J F P. Learning to classify ordinal data: The data replication method[J]. Journal of Machine Learning Research, 2007, 8(1393/1429): 6.
  • 8Frank E, Hall M. A simple approach to ordinal classification[M]. Berlin, Heidelberg: Springer, 2001 : 145-156.
  • 9Waegeman W, Boullart L. An ensemble of weighted support vector machines for ordinal regression[J]. International Journal of Computer Systems Science and Engineering, 2009, 3 (1) : 47-51.
  • 10Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression[C] //Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2000:115-132.

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部