期刊文献+

一种基于多视图数据的半监督特征选择和聚类算法 被引量:8

Semi-supervised Feature Selection and Clustering for Multi-view Data
下载PDF
导出
摘要 高维数据中许多特征之间互不相关或冗余,这给传统的学习算法带来了巨大的挑战。为了解决该问题,特征选择应运而生。与此同时,许多实际问题中数据存在多个视图而且数据的标签难以获取,多视图学习和半监督学习成为机器学习中的热点问题。本文研究怎样从"部分标签"的多视图数据中选择最大相关最小冗余的特征子集,提出一种基于多视图的半监督特征选择方法。为了剔除冗余和无关的特征,探索蕴含于多视图数据中的互补信息以及每个视图中不同特征之间的冗余关系,并利用少量标签数据蕴含的信息协同未标签数据同时进行特征选择。实验结果验证了本算法能够获得很好的特征选择效果及聚类效果。 Lots of features in high-dimensional data are redundant or irrelevant.To tackle this problem,the concept of feature selection is introduced.In the meantime,many problems in machine learning involve examples that are naturally comprised of multiple views and with a limited number of labels.Multiview learning and semi-supervised learning become the hotspots in machine learning.Hence authors investigate how to select relevant features with minimum redundancy from multi-view data with a limited number of labels,and propose a semi-supervised feature selection and clustering framework.To remove redundant and irrelevant features,authors exploit relations among views and relations among features in each view,and use a limited number of labeled data to help feature selection.The proposed framework in multi-view datasets is systematically evalated,and the results demonstrate the effectiveness and potential of the proposed method.
出处 《数据采集与处理》 CSCD 北大核心 2015年第1期106-116,共11页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61375060)资助项目 中央高校基本科研业务费专项资金(WK0110000036)资助项目
关键词 聚类 半监督 特征选择 多视图 clustering semi-supervised feature selection multi-view
  • 相关文献

参考文献21

  • 1Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(02):185-205.
  • 2Yang Y, Pedersen J O. A comparative study on feature selection in text categorization[C] // ICML. [S. 1]: Morgan Kauf- mann Publishers, 1997: 412-420.
  • 3李士进,仇建斌,於慧.基于视觉单词选择的高分辨率遥感图像飞机目标检测[J].数据采集与处理,2014,29(1):60-65. 被引量:5
  • 4Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Con- ference on Computational Learning Theory. [S. 1. ]: ACM, 1998: 92-100.
  • 5Heckmann M, Berthommier F, Kroschel K. Noise adaptive stream weighting in audio-visual speech recognition[J]. EUR- ASIP Journal on Applied Signal Processing, 2002, 2002(1) : 1260-1273.
  • 6La Cascia M, Sethi S, Sclaroff S. Combining textual and visual cues for content-based image retrieval on the world wide web [C]//Content-Based Access of Image and Video Libraries. [S. 1. ]: IEEE, 1998: 24-28.
  • 7Wu Y, Chang E Y, Chang K C C, et ai. Optimal multimodal fusion for multimedia data analysis[C]//Proceedings of the 12th Annual ACM International Conference on Multimedia. [S. 1]: ACM, 2004: 572-579.
  • 8Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005, 27(8): 1226-1238.
  • 9He X, Cai D, Niyogi P. Laplacian score for feature selection[C]//Advances in Neural Information Processing Systems 18. [S.1]: MIT Press, 2005: 507-514.
  • 10Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning[C]//Proceedings of the 24th international conference on Machine learning. [S. 1. ] : ACM, 2007 : 1151-1157.

二级参考文献17

  • 1杨桄,张柏,王宗明,刘岩鹤.基于阴影搜索法的飞机目标遥感图像分割研究[J].地理与地理信息科学,2006,22(1):48-50. 被引量:5
  • 2徐大琦,倪国强,许廷发.中高分辨力遥感图像中飞机目标自动识别算法研究[J].光学技术,2006,32(6):855-858. 被引量:9
  • 3蔡红苹,耿振伟,粟毅.遥感图像飞机检测新方法——圆周频率滤波法[J].信号处理,2007,23(4):539-543. 被引量:9
  • 4L6pez-Sastre R J, Tuytelaars T, Aeevedo-Rodriguez F J, et al. Towards a more discriminative and se- mantic visual vocabulary[J]. Computer Vision and Image Understanding, 2011, 115(3): 415-425.
  • 5Elsayad I, Martinet J, Urruty T, et al. A new spa- tial weighting scheme for bag-of-visual-words[C]// 2010 International Workshop on Content-Based Mul-timedia Indexing (CBMI). [S. 1.]:IEEE, 2010.. 1-6.
  • 6Lowe D G. Distinctive image features from scale-in- variant key points[J]. International Journal of Com- puter Vision, 2004, 60(2):91-110.
  • 7MacQueen J. Some methods for classification and a- nalysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. [S. 1] ; University of Calif. Press, 1967,(1) : 281-297.
  • 8Dash M, Liu H. Feature selection for classification [J]. Intelligent Data Analysis, 1997, 1(3).. 131- 156.
  • 9Jurie F, Triggs B. Creating efficient codebooks for visual recognition [C]//Tenth IEEE International Conference on Computer Vision, ICCV 2005. [S. I. ]..IEEE, 2005, 1: 604-610.
  • 10Wang L. Toward a discriminative codebook: code- word selection across multi-resolution [ C]//IEEE Conference on Computer Vision and Pattern Recogni- tion, CVPR'07. [S. 1.]:IEEE, 2007:1-8.

共引文献4

同被引文献85

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部