期刊文献+

基于距离补偿模型的改进DV-Hop定位算法 被引量:5

Improved DV-Hop Localization Algorithm Based on Distance Compensation Model
下载PDF
导出
摘要 传统的DV-Hop定位算法在估计网络平均跳距时,采用锚节点之间的物理直线距离代替信号实际传播距离,两者之间存在的距离误差会引起平均跳距估计不精确,从而导致较高的节点定位误差。针对该问题,提出一种改进算法。分析物理直线距离和实际传播距离存在误差的原因,将其总结为节点随机布置导致的节点间距离不均匀,以及实际传播路径与物理直线距离的偏离,并根据不均匀度和偏离度建立距离补偿模型,使物理直线距离更接近实际传播距离。与传统算法相比,改进算法未增加算法复杂度和额外的硬件设备。仿真结果表明,该算法较好地补偿了锚节点之间的距离,显著提高了算法对于未知节点的定位精度。 The traditional DV-Hop localization algorithm estimates the average hop distance with the physical distance between the anchor nodes instead of actual transmission distance,and the distance error between the two kinds of distance undoubtedly leads to the inaccuracy of the average hop distance and relatively high localization error. Aiming at this problem,the improved algorithm is proposed. The reason of error between the physical distance and actual transmission distance is analyzed in the paper,and is summarized as the asymmetry of distance resulted from the nodes random distribution,as well as the deviation degree between the actual transmission path and the physical distance,and the distance compensation model is built based on the asymmetry and deviation degree to make the physical distance closer to the transmission distance. The improved algorithm increases no extra hardware and the complexity of the DV-Hop. The simulation results show that the improved algorithm compensates the distance between the anchor nodes,and improves the localization accuracy to the unknown nodes.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第3期32-36,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61271377 61172131)
关键词 距离补偿 估计距离 不均匀度 偏离度 DV-HOP定位算法 无线传感器网络 distance compensation estimated distance asymmetry degree deviation degree DV-Hop positioning algorithm Wireless Sensor Network(WSN)
  • 相关文献

参考文献4

二级参考文献16

  • 1尚志军,曾鹏,于海斌.无线传感器网络节点定位问题[J].计算机科学,2004,31(10):35-38. 被引量:29
  • 2张光辉,李建东,周雷,刘静.运动对无线Ad Hoc网络中保持连通的临界传输半径的影响[J].西安电子科技大学学报,2005,32(6):881-884. 被引量:5
  • 3Aziz N A B A, Mohemmed A W, Daya S B S. Particle Swarm Optimization and Voronoi Diagram for Wireless Sensor Networks Coverage Optimization Intelligent and Advanced Systems[C]// Proc. of ICIAS'07. Kuala Lumpur, Malaysia: [s. n.], 2007.
  • 4Aziz N A B A, Mohemmed A W, Alias M Y. A Wireless Sensor Network Coverage Optimization Algorithm Based on Particle Swarm Optimization and Voronoi Diagram Networking[C]//Proc. of IEEE International Conference on Networking, Sensing and Control. Okayama, Japan: [s. n.], 2009.
  • 5Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm[C]//Proc. of IEEE International Conference on Systems, Man and Cybernetics. Orlando, Florida, USA: [s. n.], 1997.
  • 6Shi Yuhui, Eberhart R C. A Modified Particle Swarm Optimi- zer[C]//Proc, of IEEE Conf. on Evolutionary Computation. Anchorage, USA: [s. n.], 1998.
  • 7陈传璋 金福临 等.数学分析[M].北京:高等教育出版社,1983..
  • 8Toumpis S,Goldsmith A. Capacity regions for wire-less ad hoc networks [J]. IEEE Transactions onWireless Communications, 2003,2(4) : 736 — 748.
  • 9Rezagah R E,Mohammadi A. Characterization of thescalability of wireless Ad Hoc networks under chan-nel limitations[J]. Innovations in Information Tech-nology? 2006, 11: 1 — 5.
  • 10Robert B. Cooper. Introduction to queuing theory[M]. New York: Elsevier North Holland, 1981 :284.

共引文献93

同被引文献35

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部