期刊文献+

基于粒子群优化的复杂网络社区挖掘 被引量:4

Complex Network Community Mining Based on Particle Swarm Optimization
下载PDF
导出
摘要 为解决复杂网络社区结构挖掘的优化问题,根据复杂网络拓扑结构的先验知识,提出一种基于离散粒子群优化的社区结构挖掘算法。将粒子的位置和速度定义在离散环境下,设计粒子的更新规则,在不需要事先指定社区个数的前提下自动判断网络的最佳社区个数,给出局部搜索算子,该算子可以帮助算法跳出局部最优解,提高算法的收敛速度和全局寻优能力。实验结果表明,与iMeme-net算法相比,该算法能够准确地挖掘出复杂网络中隐藏的社区结构,且执行速度较快。 In order to solve the problem of community mining optimization from complex network,according to the prior knowledge of the topology structure of complex network,a complex network community mining algorithm based on Particle Swarm Optimization(PSO)is proposed. In the proposed algorithm,particle's position and velocity are redefined in discrete case,particle's update principles is redesigned,the proposed algorithm can automatically determine the best community numbers without knowing it in advance. In order to improve the global search ability of the proposed algorithm,a local search operator is designed,and this operator can help the algorithm to jump out of local optimum and improves the convergence speed. Experimental results demonstrate that the proposed algorithm can efficiently dig out the community structures hidden behind complex networks,and the execution speed is much faster than that of i Meme-net algorithm.
作者 白云 任国霞
出处 《计算机工程》 CAS CSCD 北大核心 2015年第3期177-181,共5页 Computer Engineering
关键词 粒子群优化 复杂网络 社区结构 社区挖掘 局部搜索 模块密度 Particle Swarm Optimization(PSO) complex network community structure community mining local search modularity density
  • 相关文献

参考文献2

二级参考文献25

  • 1Holland J H. Adapatation in Nature and Artificial System[M]. [S. 1.]: University of Michigan Press, 1975.
  • 2Farmer J D, Packed N H, Perelson A S. The Immune System, Adaptation and Machine Learning[J]. Physica, 1986, 22(2): 187-204.
  • 3Dorigo M, Maniezzo V C A. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on System, Man and Cyternetics, Part B, 1996, 26(1): 29-41.
  • 4Kirkpatrick S, Gelatt C, Vecchi M. Optimization by Simulated Annealign[J]. Science, 1983, 220(4598): 671-680.
  • 5Kenndey J. Particle Swarm Optimization[C]//Proc. of IEEEInternational Conference on Neural Networks. Perth, Australia: IEEE Press, 1995.
  • 6Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc. of the 6th International Symposium on Micro Machine and Human Science. NagoYa, Japan: IEEE Press, 1995.
  • 7John V, Trucco E, Ivekovic S. Markerless Human Articulated Tracking Using Hierarchical Panicle Swarm Optimization[J]. Image and Vision Computing, 2010, 28(11): 1530-1547.
  • 8Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimi- zation[C]//Proc, of IEEE Conference on Evolutionary Computation. Seoul, Korea: IEEE Press, 2001.
  • 9Chatterjee A, Siarry P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.
  • 10Van D B F, Engelbrecht A P. An Analysis of Particle Swarm Optimizer[D]. IS. 1.]: University of Pretoria, 2002.

共引文献17

同被引文献63

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 4Wasserman S F.Social Network Analysis:Method and Applictions[M].Cambrige,UK:Cambrige University,1994.
  • 5Kitsak M,Gallos L K,Havlin S,et al.Identification of Influential Spreaders in Complex Networks[J].Nature Physics,2010,6(11):888-893.
  • 6Holme P,Newman M E J.Nonequilibrium Phase Transition in the Coevolution of Networks and Opinions[J].Physical Review E,2006,74(5).
  • 7Wieland S,Aquino T,Nunes A.The Structure of Coevolving Infection Networks[J].Europhysics Letters,2012,97(1).
  • 8Yoo J,Lee J S,Kahng B.Disease Spreading on Fitness-rewired Complex Networks[J].Physica A:Statistical Mech-anics and Its Applications,2011,390(23):4571-4576.
  • 9Dodds P S,Watts D J.Universal Behavior in a Generalized Model of Contagion[J].Physical Review Letters,2004,92(21).
  • 10Medo M,Zhang Yicheng,Zhou Tao.Adaptive Model for Recommendation of News[J].Europhysics Letters,2009,88(3).

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部