期刊文献+

粒子群优化算法的边界变异策略比较研究 被引量:4

Comparative Study of Boundary Mutation Strategy for Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为解决粒子群优化(PSO)算法中粒子越界和早熟收敛等问题,在比较国内外学者提出的边界变异策略基础上,提出一种新的边界变异策略——双重限制变异策略。针对粒子越界时速度和位置变异方向的不同情形,通过同时限制粒子的更新位置和更新速度,将粒子控制在搜索空间范围内。利用5种测试函数进行实验,结果表明,与其他4种边界变异策略相比,双重变异策略收敛速度快,在解决粒子越界问题上具有较好的效果。此外,通过实验测试显示粒子的最大速度和最大位置的比值与变异策略的好坏程度成反比,为边界变异策略的研究提供了一定依据。 To control particles to fly inside search space and deal with the problems of premature convergence of Particle Swarm Optimization(PSO)algorithm,based on the comparative study of boundary mutation strategy proposed by scholars at home and abroad,this paper proposes an improved PSO algorithm,called double restriction mutation strategy.When particle tends to leave the search space,in view of the different situation for direction of velocity and position,the strategy controls the particle in the search space effectively,mainly by limiting to updating the position while updating the speed of the particle. This paper lists the performance comparison of four kinds of boundary mutation strategy and this strategy. Experimental studies through five test functions show that the double limit mutation strategy proposed in this paper has faster convergence speed. It is more effective to solve the problem of particle bound. Furthermore,this paper tests the relationship between maximum speed and position on the boundary mutation strategy by experiment. The result shows that the ratio of particles' maximum speed and position is inversely proportional to the good or bad degree of the mutation strategy. It provides a basis for the study of boundary mutation strategy.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第3期191-197,210,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61364025) 江西省教育厅科学技术基金资助项目(GJJ13729) 武汉大学软件工程国家重点实验室开放基金资助项目(SKLSE2012-09-39) 九江学院科研基金资助项目(2013KJ31)
关键词 粒子群优化 边界变异 双重限制 搜索空间 越界 早熟收敛 Particle Swarm Optimization(PSO) boundary mutation double restrictions search space out of bounds premature convergence
  • 相关文献

参考文献3

二级参考文献30

  • 1潘峰,涂序彦,陈杰,付继伟.协调粒子群优化算法—HPSO[J].计算机工程,2005,31(1):169-171. 被引量:10
  • 2付国江,王少梅,刘舒燕,李宁.含边界变异的粒子群算法[J].武汉理工大学学报,2005,27(9):101-103. 被引量:11
  • 3Bratton D, Kennedy J. Defining a standard for particle swarm optimization//Proceedings of the IEEE Swarm lntelli genceSymposium. Honolulu, HI, 2007:120-127.
  • 4Eberhart R, Shi Y. Particle swarm optimization: developments, applications, and resources//Proceedings of the IEEE International Conference on Evolutionary Computation. Piscaraway, NJ, 2001, 1:81-86.
  • 5Said M, Ahamed A. Hybrid periodic boundary condition fro particle swarm optimization. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3251-3256.
  • 6Robinson J, Yahya R. Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas Propagalion, 2004, 52(2):397- 407.
  • 7Huang T, Mohan A S, A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas and Wireless Propagation Letters, 2005, 4(1): 112 -117.
  • 8Xu N H, Yahya R. Boundary conditions in particle swarm optimization revisited. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 760- 765.
  • 9Li J, Ren B, Wang C. A random velocity houndary condition for robust particle swarm optimization//Proceedings of the Life System Modeling and Simulation 2007 International Conference on Bio-Inspired Computational Intelligence and Applications. Shanghai, China, 2007:92-99.
  • 10Zhang W J, Xie X F, Bi D C. Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space//Proceedings of the IEEE CEC. Oregon, USA, 2004: 2307 -2311.

共引文献53

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部