期刊文献+

基于视觉注意机制的异源图像融合 被引量:3

Difference-source Image Fusion Based on Visual Attention Mechanism
下载PDF
导出
摘要 针对融合规则不能真实反映观察者视觉感知特点的问题,提出一种异源图像多尺度融合算法。应用视觉注意机制,计算异源图像间的视觉显著度匹配系数,并根据这一系数对小波变换近似系数进行自适应融合,在小波细节系数融合中使用带有方向连续性检查的选大值方法,采用视觉显著度差对融合算法的视觉保持一致性进行评价。测试结果表明,与传统算法相比,该算法在客观性能指标和主观视觉一致性方面都有所提高。 A Visual Attention Mechanism(VAM)based multi-scale image fusion algorithm is proposed in this paper,which tries to overcome the inconformity between fusion rules and observer′ s visual characteristics. Visual saliency matching coefficients based on visual attention mechanism are computed and employed in Wavelet Transform(WT)approximate coefficient fusion. In WT detail coefficient fusion,select-max rule with directional consistency checking is used. A fusion performance evaluating method based on the comparison of visual saliency is proposed to measure visual consistency between source images and fused results. Experimental results demonstrate the superiority of the proposed algorithm in terms of subjective visual similarity and objective quantization comparison.
作者 胡燕翔 万莉
出处 《计算机工程》 CAS CSCD 北大核心 2015年第3期247-252,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61274021)
关键词 异源图像融合 视觉注意机制 视觉一致性 视觉显著度 多尺度融合算法 different-source image fusion Visual Attention Mechanism(VAM) visual consistency visual saliency multi-scale fusion algorithm
  • 相关文献

参考文献2

二级参考文献19

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 3梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 4Guo Lei, Li Huihui, Bao Yunsheng. Image Fusion [M]. Beijing: Publishing House of Electronics Industry Press, 2008.
  • 5Truong T. Nguyen, Herv6 Chauris. uniform discrete curvelettransform [J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3618-3614.
  • 6Cands E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms[J]. Multiseale Modeling and Simulation, 2006, 5(3): 861-899.
  • 7Burt P J, Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, ].983, 31(4): 532-540.
  • 8Mallat S G. A theory decomposition: The wavelet for multiresolution representation [J] signal IEEE Transaction on Pattern Anas and Machine Inlligence 1989, 11(7): 674-693.
  • 9Do M N, Vetterli M. Contourlet: A directional multiresolution image representation [C]//IEEE International Conference on Image Processing Rochester, 2002: 357-360.
  • 10Do M N. Directional multiresolution image representations [D]. Lausanne: Switzerland Swiss Federal Institute of Technology, 2001.

共引文献27

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部