期刊文献+

结合Retinex增强的井下图像拼接方法 被引量:2

Underground mine image mosaic technique in combination with Retinex
下载PDF
导出
摘要 为在矿井环境下尽量多的提取图像特征点数量,从而监控矿井下生产情况.采用局部双边滤波算法对图像进行增强,再利用近似的Hessian矩阵和框状滤波确定特征点的位置;计算特征点的描述子向量,采用最近距离比次近距离的匹配算法将特征点配对,使用RANSAC算法消除误匹配错误;利用特征点计算出变换矩阵,采用线性渐变融合方法进行图像融合.研究结果表明:图像增强后特征点数量明显增多,SURF算法的拼接效率显著上升,有利于提高匹配的准确性和拼接的快速性. In order to extract the feature points under the environment of the mine as many as possible for monitoring production of underground mining,this paper adopted the partial bilateral filtering algorithm to enhance images,and utilized the approximate Hessian matrix and frame-like filtering to determine the positions of the feature points,then calculated the descriptor vectors of feature points,employed matching algorithm of the ratio of the closest distance and the next closest distance to match feature points,and eliminated error matching by RANSAC algorithm.Finally the paper made use of the feature points to calculate the transformation matrix,and used the method of linear gradient fusion to realize image fusion.The research results show that,the number of the feature points significantly increase after enhancing image,and the splicing of SURF algorithm efficiency is also increased noticeably,which are helpful to improve the accuracy of matching and the quickness of splicing.
作者 王焱 熊飞雪
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2015年第2期228-232,共5页 Journal of Liaoning Technical University (Natural Science)
关键词 图像拼接 图像增强 图像融合 加速健壮特征算法(SURF) 双边滤波 image mosaic image enhancement image fusion Speeded Up Robust Features(SURF) bilateral filtering
  • 相关文献

参考文献9

二级参考文献72

共引文献201

同被引文献21

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2李学明.基于Retinex理论的图像增强算法[J].计算机应用研究,2005,22(2):235-237. 被引量:65
  • 3尤玉虎,周孝宽.数字图像最佳插值算法研究[J].中国空间科学技术,2005,25(3):14-18. 被引量:40
  • 4何立,孙涵,黄永璘,黄小燕.MODIS 1B数据的重采样方法研究[J].遥感信息,2007,29(3):39-43. 被引量:3
  • 5张祖勋.影象灰度内插的研究[J].测绘学报,1983,12(3):178-188.
  • 6Higgins W E.Orlick C J.Ledell,B E.Nonlinear filtering approach to 3-D gray-scale image interpolation[J].IEEE Tra-nsactions on Medical Imaging,1996,15(4):580-587.
  • 7Dan Su,Philip Willis.Image interpolation by pixel level data-dependent triangulation[J].Computer Graphics Forum,2004,23(2): 189-201.
  • 8Birchfield,S.Tomasi,C.A pixel dissimilarity measure that is insensitive to image sampling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(4):402-406.
  • 9GuoYongmei,ChenHao,HongWen,et al.Resample in the first order motion compensation of real time SAR Processor[C],proceeding of ICSP, 2000:1 830-1 833.
  • 10Pavel Zem6ik,Bronislav Pfibyl,Adam Herout,et al.Ac-celerated image resampling for geometry correction[J].Journal of Real-Time Image Processing,2013,8(4):369-377.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部