期刊文献+

一类线性偏微分方程的整函数解及相关性质(英文)

Entire Solutions of Linear Partial Differential Equation and Their Relevant Properties
原文传递
导出
摘要 研究了一类和Gegenbauer多项式相关的偏微分方程,给出了它们的整函数解的表达形式,并建立了这些整函数解的级和型的表示公式. Abstract: The representation of entire solutions of a linear homogeneous partial differential equation related to Gegenbauer polynomials is obtained. Moreover, the expressions of order and type of the entire solutions are established.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期98-104,共7页 Journal of Fudan University:Natural Science
基金 Supported by grant from the NSF of China(11171220)
关键词 整函数解 Gegenbauer多项式 偏微分方程 entire solutions Gegenbauer polynomials partial differential equation
  • 相关文献

参考文献14

  • 1Andrews G E, Askey R, Roy R. Special functions[M]. Cambridge Cambridge University Press, 2000.
  • 2Wang Z X, Guo D P Introduction to special function[M]. Beijing.. Peking University Press, 2000.
  • 3Hu P C, Yang C C. A linear homogeneous partial differential equation with entire solutions represented by Bessel polynomials[J]. J Math Anal Appl, 2010,368. 263-280.
  • 4Hu P C, Li B Oo On meromorphic solutions of linear partial differential equations of second order[J]. J Math Anal Appl 2012,393. 200-211.
  • 5Wang X L, Zhang F L, Hu P C. A linear homogeneous partial differential equation with entire solutions represented by Laguerre polynomials[J]. Abstract and Applied Analysis, 2012, 2012. 1-10. Article ID 609862.
  • 6Chihara T S. An introduction to orthogonal polynomials[M]. New York: Gordon and Breach, 1978.
  • 7Szeg6 GOrthogonal polynomials(4th ed)[M]. New York: American Mathematical Society, 1975.
  • 8Hu P C. Introduction of function of one complex veriable(Chinese)[M]. Beijing: Science Press, 2008.
  • 9Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line[J]. J Math Anal Appl, 1988,226: 180-206.
  • 10Terrano A E. A method for Feynman diagram evaluation[J]. Phys Lett, 1980,93B: 424-428.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部