摘要
提出一种基于图像高频和中频信息的超分辨率算法。分别将图像高频和中频作为高分辨图像和低分辨率图像的特征,以图像高频和中频信息作为训练样本对,采用全局迭代收缩方法(GISA)进行稀疏分解,获得高、中分辨率字典对。根据测试图像对应的中频信息和字典对获得图像高频信息,结合测试图像插值放大结果,经非局部相似性方法处理后获得高分辨率图像。实验结果表明,提出的方法具有较高的重建质量。
An image super-resolution( SR) reconstruction algorithm based on high- and mid-frequency components is proposed in this paper. The algorithm selects high- and mid-frequency of natural images as the feature of high-resolution( HR) images and low-resolution( LR) images respectively. Patch pairs,composed of high- and mid-frequency components,are trained by GISA( generalized iterated shrinkage algorithm) to obtain the high-resolution and mid-resolution joint dictionary pair. According to the mid-frequency of the test image and the dictionary pair,image high-frequency is reconstructed. Then,combined with interpolated LR images and reconstructed high-frequency,the HR image is reconstructed after a non-local similarity regularization term. Experimental results show that the proposed method has better performance.
出处
《杭州电子科技大学学报(自然科学版)》
2015年第1期49-52,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
浙江省自然科学基金资助项目(Y1111213)
关键词
高频
中频
字典
超分辨率
high-frequency
mid-frequency
dictionary
super-resolution