期刊文献+

无标度网络上具有时滞的计算机病毒传播模型研究 被引量:3

A Study of Computer Virus Spreading Model with Time Delay on Scale-free Network
下载PDF
导出
摘要 基于计算机网络的无标度性,提出了一类具有非线性传染率和时滞特性的计算机病毒传播模型,得到了该病毒传播的基本再生数,证明了当基本再生数小于1时病毒将逐渐消亡,当基本再生数大于1时病毒将持续存在.数值仿真验证了所得的结论的正确性. In this paper,a novel epidemic model of computer virus on scale-free network with time delay and nonlinear infectivity is proposed.The basic reproductive number for the model is presented.We prove that the viruses will die out when the basic reproductive number is less than the unity.Whereas the permanence of the viruses is shown if the basic reproductive number exceeds the unity.Numerical simulations confirmed the analytical results.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第2期111-116,共6页 Journal of Hebei Normal University:Natural Science
基金 河北省自然科学基金(A2012205028) 军械工程学院创新基金(YSCX1201))
关键词 无标度网络 计算机病毒 时滞 非线性传染率 基本再生数 scale-free network computer viruses time delay nonlinear infectivity basic reproductive number
  • 相关文献

参考文献15

  • 1KEPHART J O,WHITE S R. Directed-graph Epidemiological Models of Computer Viruses [M]. IEEE Comput Soc Symp Res Secur Privacy, 1991 : 343-359.
  • 2BARABASI A L, ALBERT R. Emergence of Scaling in Random Networks[J]. Science, 1999,286:509-512.
  • 3汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 4PASTOR S R,VESPIGNANI A. Epidemic Spreading in Scale-free Networks[J]. Physical Review Letters, 2001,86 : 3200- 3203.
  • 5YANG L, YANG X,LIU J, et al. Epidemics of Computer Viruses: A complemnetwork Approach [J]. Applied Mathematics and Computation, 2013,219:8705-8717.
  • 6YANF X, YANG L X. Towards the Epidemiological Modeling of Computer Viruses[J]. Discrete Dyn Nat Soc, 2012,259: 671-681.
  • 7GAN C,YANG X,LIU W,et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear In- cidence Rate[J]. Applied Mathematics and Computation, 2013,222:265-274.
  • 8PRAPANPORN R, KONSTANTIN B. A Class of Pairwise Models /or Epidemic Dynamics on Weighted Networks[J]. Bull Math Biol,2013,75:466-490.
  • 9ZHANG J,JIN Z. Epidemic Spreading on Complex Networks with Community Structure[J]. Applied Mathematics and Computation, 2012,219 .. 2829-2838.
  • 10GAN C,YANG X, LIU W,et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear Incidence Rate[J]. Applied Mathematics and Computation,2013,222: 265-274.

二级参考文献15

  • 1李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:45
  • 2张海峰,傅新楚.含有免疫作用的SIR传染病模型在复杂网络上的动力学行为[J].上海大学学报(自然科学版),2007,13(2):189-192. 被引量:21
  • 3Pastor-Satorras R,Vespignani A.Epidemic sprea-ding in scale-free Networks[J].Physical Review Let-ters,2001,86:3200-3203.
  • 4Newman M E J.Spread of epidemic disease on net-works[J].Physical Review:E,2002,66:016128.
  • 5Pastor-Satorras R,Vespignani A.Epidemic dynamicsand endemic states in complex networks[J].PhysicalReview:E,2001,63:066117.
  • 6David J D E,Pejman R,Benjamin M B,et al.A sim-ple model for complex dynamical transitions in epi-demics[J].Science,2002,287:667-670.
  • 7Moreno Y,Nekovee M,Pacheco A F.Dynamics ofrumor spreading in complex networks[J].PhysicalReview:E,2004,69:066130.
  • 8Chen Jiancong,Zhang Huiling,Guan Zhihong,et al.Epidemic spreading on networks with overlappingcommunity structure[J].Physica:A,2012,391:1848-1854.
  • 9Zhang Huiling,Guan Zhihong,Li Tao,et al.A sto-chastic SIR epidemic on scale-free network with com-munity structure[J].Physica:A,2013,392(4):974-98.
  • 10Liu Junli,Zhang Tailei.Epidemic spreading of anSEIRS model in scale-free networks[J].CommunNonlinear Sci Numer Simulat,2011,16:3375-3384.

共引文献69

同被引文献21

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部