期刊文献+

车底图像局部不变特征信号提取SIFT算法对比分析 被引量:1

A Comparative Analysis on SIFT(Scale Invariant Feature Transform) Algorithm for Local Invariant Feature Signal Extraction of Underbody Image
下载PDF
导出
摘要 为实现机车车底图像局部不变特征信号提取,比较了3种新兴的SIFT改进算法:GS-SIFT算法、RIT-SIFT算法和Harris-SIFT算法,对3种改进算法的准确性、实时性和高效性进行评价。应用基于SIFT的改进算法对火车机车车底实际图像进行处理,提取局部不变特征值,改进算法针对机车车底图像具有很好的适用性和准确高效性。 To extract local invariant feature signals of underbody images of locomotive,the Paper makes a comparison on three emerging improved SIFT algorithms:GS-SIFT Algorithm,RIT-SIFT Algorithm and Harris-SIFT Algorithm,making an evaluation on the accuracy,real-timeliness and efficiency of the three improved algorithms. It can process the actual underbody image by applying the improved algorithm that is based on SIFT,with the local invariant feature value extracted. The Improved algorithm is sound in applicability,accuracy and efficiency in view of underbody images of locomotive.
出处 《铁道技术监督》 2015年第2期40-45,共6页 Railway Quality Control
关键词 机车车底 图像分析 特征提取 局部不变 GS-SIFT RIT-SIFT Harris-SIFT Underbody of Locomotive Image Analysis Feature Extraction Local Invariant GS-SIFT RIT-SIFT Harris-SIFT
  • 相关文献

参考文献1

二级参考文献11

  • 1罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 2丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 3KELLER Y, AVERBUCH A, ISRAELI M. Pseu- do-polar based estimation of large translations rotations and sealings in images[J]. IEEE Transaction on Image Processing, 2005,14 (1) . 12-22.
  • 4SIGGEI.KOW S. Feature histograms for contentbased image retrieval [D].Frieiburg: Albert Lud wigs University of Frieiburg, 2002.
  • 5MIKOLAJCZYK K, SCHMID C. An affine invariant interest point detector[C]. Proceedings of the 7th European Conference on Computer Vision, 2002:128-142.
  • 6ZHANG Z Y, DERICHE R, FAUGERAS O. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [J]. Artificial Intelligence, 1995, 78 (2):87-119.
  • 7LOWED G. Distinctive image features from scale- invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2).91-110.
  • 8LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998,30(2) :79-116.
  • 9KITTLER J,HATEF M,DOIN P R W,etal.. On combining classifier [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3) :226-239.
  • 10FELZENSZWALB P F, HUTTENLOCHER D P. Efficient belief propagation for early vision [J]. International Journal of Computer Vision, 2006, 70(1) :41-54.

共引文献79

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部