期刊文献+

金纳米线接触构型相关的双重负微分电阻与整流效应

Gold nanowire tip-contact-related negative differential resistance twice and the rectification effects
原文传递
导出
摘要 运用第一性原理密度泛函理论(DFT)和非平衡格林函数(NEGF)方法,研究了[111]Au纳米线与1,4-二硫苯酚(DTB)构成的分子结的电子输运性质.构建并优化不同的Au-DTB接触构型,计算发现:尖端顶位构型最利于电流输运;非对称构型大多具有很好的整流特性(最大整流比为25.6);部分结构出现双重负微分电阻(NDR)效应.分析表明,整流效应主要源于非对称接触构型两端S-Au键的稳定性差别;尖端金原子与硫原子的耦合能级中,近费米面的能级对低压区电子传输起主要作用;电压增大,离费米面较远的能级对输运起主导作用,DTB的本征能级也逐渐参与,这一转变致使电流出现两峰一谷的双重NDR效应. Electron transport properties of molecular junctions formed by 1, 4-dithiolbenzene(DTB) coupled to [1,1,1] Au nanowires are investigated by using the method of non-equilibrium Green's functions based on first-principle density functional theory. Different S-Au contact configurations are constructed and optimized. The junction with tip-type Au electrode top binding to a thio (S) atom is illustrated by the best configuration for electron transport. Juntions with asymmetric electrode-DTB contact show excellent rectifying performance (the largest rectification ratio being 25.6). Other junctions display negative differential resistance (NDR) effect twice. Analysis shows that the rectifying effect may originate from the difference between the stabilities of S-Au contact modes at both sides. Molecular orbitals including the tip Au atoms are calculated. In low bias region, the orbitals near the Fermi energy dominate the electrons transmission; while, as the bias increases, those apart from the Fermi energy contribute to the transport, Mong with the DTB eigen- level. During the whole process, the locations and amplitude of transmission vary with bias voltage and I/V curves show two peaks, resulting in twice-NDR effect.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第5期343-350,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号.11274238 11104197) 江苏省高校"青蓝工程"项目和国家级大学生创新创业训练计划(批注号:201310285016Z)资助的课题~~
关键词 金纳米线 接触构型 负微分电阻效应 整流效应 gold nanowire, contact configuration, negative differential resistance, rectification effect
  • 相关文献

参考文献25

  • 1Avirm A, Ratner M A: 1974 Chem. Phys. Lett. 29: 277.
  • 2Fu X X, Zhang L X, Li Z L, Wang C K. 2013 .Chin. Phys. B: 22: 028504.
  • 3Zhao P, Liu D S. 2012 .Chin. Phys. Lett. 29: 047302.
  • 4Ren H, Liang W, Zhao P, Liu D S. 2012 .Chin. Phys. Lett. 29: 077301.
  • 5Yao Z, Postma W C, Balent S L, Dekker C: 1999 Nature 402: 273.
  • 6Metzger R M, Chen B, Hopfner U, Lakshmikantham M V, Vuillaume D, Tsuyoshi K, Wu X, Hiroki T, Terry V H, Hiromi S, Jeffrey W B, Christina H, Michael P C, Brehmer B, Geoffrey J A J. 1997 J. Am. Chem. Soc. 119: 10455.
  • 7Ouyang M, Awschalom D D. 2003 .Science 301: 1074.
  • 8Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P. 2014 .Chin. Phys. B: 23: 097102.
  • 9Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, A bruna H D, McEuen P L, Ralph D C. 2002 .Nature 417 722.
  • 10Liang W J, Shores M P, Bockrath M, Long J R, Park H. 2002 .Nature 417 725.

二级参考文献32

  • 1邹斌,李宗良,王传奎,薛其坤.电极距离对分子器件电输运特性的影响[J].物理学报,2005,54(3):1341-1346. 被引量:16
  • 2Xue Y,Datta S,Ratner M A 2001 J.Chem.Phys.115 4292.
  • 3Palacios J J,Prez-Jimnez A J,SanFabin E,Vergs J A 2002 Phys.Rev.B 66 035322.
  • 4Taylor J,Guo H,Wang J 2001 Phys.Rev.B 63 121104.
  • 5Ke S H,Baranger H U,Yang W T 2004 J.Am.Chem.Soc.12615897.
  • 6Liu R,Ke S H,Baranger H U,Yang W T 2005 J.Chem.Phys.122 44703.
  • 7Ke S H,Baranger H U,Yang W T 2005 J.Chem.Phys.123 114701.
  • 8Ventra M D,Pantelides S T,Lang N D 2000 Phys.Rev.Lett.84 979.
  • 9Hu Y B,Zhu Y,Gao H J,Guo H 2005 Phys.Rev.Lett.95 156803.
  • 10Evers F,Weigend F,Koentopp M 2004 Phys.Rev.B 69 235411.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部