期刊文献+

基于混合高斯模型的运动目标检测算法 被引量:1

Moving object detection algorithm based on Gaussian mixture model
下载PDF
导出
摘要 针对摄像机在静止条件下的自适应运动目标检测,提出一种改进的运动目标检测算法。首先,针对高斯混合背景建模初期背景建模效果不理想的问题,利用统计的方法得到背景模型,根据背景图像建立高斯混合模型;在模型学习方面,为均值与方差设置了不同的学习率。针对传统的LBP算子的缺陷,提出了一种改进的纹理特征算子,将其与HSV颜色空间去阴影的方法相结合,从而实现对阴影的检测与去除,利用随机Hough算子对圆的检测原理,在运动目标检测的基础之上,实现对人头的边缘检测。实验结果表明:该算法可以很好地检测出运动目标,并能够有效去除运动目标包含的阴影区域,从而实现人头区域的检测。 Under the static condition of a camera for adaptive moving target detection,this paper puts forward an improved algorithm for moving object detection. First of all,considering that in the early stage of Gaussian mixture background modeling,the background modeling effect is not ideal,the background model is obtained by statistical method at the beginning of the video sequence,and then Gaussian mixture models are set up for the background image; then,in aspect of the model learning,different rates of learning are set for the mean and variance in order to improve the convergence rate of the background model. In view of the defects of the traditional LBP operator,an improved texture feature operator is proposed. This improved operator is combined with the method of removing shadow area of the HSV color space,thereby to detect and get rid of the shadow,and further to achieve detection of the edge of human head according to the principle of random Hough operator's detection of the ring. The experimental results show that the proposed algorithm can well detect moving targets,and can effectively remove the shadow in the moving object and thereby to achieve the detection of head area.
作者 赵群
出处 《应用科技》 CAS 2015年第1期19-21,27,共4页 Applied Science and Technology
关键词 目标检测 自适应高斯混合模型 阴影检测 LBP算子 纹理特征算子 边缘检测 target detection adaptive gaussian mixture model shadow detection LBP operator texture operator edge detection
  • 相关文献

参考文献4

二级参考文献35

  • 1李鹏杰,杨树元.运动目标自动特征提取与跟踪[J].计算机科学,2002,29(z2):174-178. 被引量:3
  • 2王华伟,李翠华,施华,韦凤梅.基于HSV空间和一阶梯度的阴影剪除算法[J].计算机工程与应用,2005,41(8):43-44. 被引量:6
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 5Cucchiara R,Grana C,Piccardi M,et al.Improving shadow suppression in moving object detection with HSV color information.Intelligent Transportation Systems,2001.Proceeding 2001:IEEE.2001:334-339.
  • 6Cheng Yizong.Mean shift,mode seeking,and clustering.Pattern Analysis and Machine Intelligence,IEEE.1995;17(8):790-799.
  • 7Fukunaga K,Hostetler L.The estimation of the gradient of a density function,with applications in pattern recognition.Information Theory,IEEE,1975;21(1):32-40.
  • 8Zhou Kang, Tong Xiaojun, Xu Jin. An Algorithm of Sticker DNA Chip Model on Making Spanning Tree Problem[C]//Proceedings of the 5th International Conference on Machine Learning and Cybernetics. Dalian, China, 2006 : 4287-4292.
  • 9Ribaric S, Adrinek G, Segvic S. Real-time Active Visual Tracking System[C]//IEEE Meleeon. Vol. 1. May 2004:231-234.
  • 10Barron J L,Beauchemin S S,Fleet D J. On Optional Flow[C]// 6th Int. Conf. on Artificial Intelligence and Information-Control Systems of Robots. Bratislava, Slovakia, 1994 : 3-14.

共引文献47

同被引文献8

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部