期刊文献+

AEPD、AST和ALD分布下金融资产收益率典型事实描述与VaR度量 被引量:12

Description of the Typical Characteristics of Financial Asset's Yield Distribution and VaR Models Based on AEPD、AST and ALD Distribution
原文传递
导出
摘要 金融资产收益率分布具有"尖峰"、"肥尾"、"有偏"、"非对称"等典型事实,传统的正态分布、t分布、SKST分布无法完全描述这些特征,影响了以收益率分布设定为基础之一的参数法VaR模型度量的效果。近年来,理论界提出了AEPD、AST、ALD等分布来改善对金融资产收益率分布的描述。本文以沪深300指数为例,比较和分析了这些分布对金融资产收益率典型事实特征的描述及其在VaR度量效果上的差异。研究表明并非捕捉金融资产收益率分布典型事实越多的模型测度风险的效果越好:AEPD、AST、ALD分布能较好地描述金融资产收益率的典型特征,但是在风险度量效果上却只能证明AEPD、AST分布绝对优于正态分布,而与SKST分布相比无明显差异;ALD分布在度量空头VaR时效果甚至比正态分布更差,但在计算低分位水平下的多头VaR值时却明显优于其他分布。 The financial asset's yield distribution has some typical characteristics such as "leptokurtic", "fat tail", " skewed" and " Asymmetry",but the traditional normal distribution,t distribution,SKST distribution cannot fully describe these characteristics,which has influenced the efficiency of parameter method of VaR models based on them.In recent years,the theoretical circle has proposed AEPD,AST,ALD and other distributions to improve the description of the financial asset's yield distribution.The CSI 300 index is choosed to analysis and compare the description on the typical characteristics of financial asset's yield distribution and also the measurement differences of VaR models based on them.The empirical results show that the more typical characteristics of financial asset's yield distribution the model captures,the better to measure VaR.It only proves that the measurement effects of the VaR models based on AEPD,AST distribution are absolutely better than the model based on normal distribution,but have no obvious difference with model based SKST distribution;Model based on ALD performs even worse when measuring the short VaR but performs best when measuring the long VaR under the low quantile.
作者 刘攀 周若媚
出处 《中国管理科学》 CSSCI 北大核心 2015年第2期21-28,共8页 Chinese Journal of Management Science
基金 中央高校基本科研业务费专项资金项目(JBK150952)
关键词 VAR AEPD分布 AST分布 SKST分布 ALD分布 VaR AEPD AST distribution SKST distribution asymmetric Laplace distributionGAO Da-liang LIU Zhi-feng YANG Xiao-guang
  • 相关文献

参考文献2

二级参考文献44

  • 1余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76
  • 2龚锐,陈仲常,杨栋锐.GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J].数量经济技术经济研究,2005,22(7):67-81. 被引量:99
  • 3刘小茂,杜红军.金融资产的VaR和CVaR风险的优良估计[J].中国管理科学,2006,14(5):1-6. 被引量:6
  • 4Morgan J. P. Inc. RiskMetrics Technical Document 4th Edition[M]. 1996.58--61.
  • 5Mcneil & Frey. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach [J]. Journal of Empirical Finance, 2000, (7): 271 --300.
  • 6Cont. Empirical properties of assets returns: Stylized facts and statistical issues[J]. Quantitative Finance, 2001,(1) :223--236.
  • 7Sardosky. Stochastic volatility forecasting and risk management[J]. Applied Financial Economics, 2005,15.
  • 8Challet, Marsili, and Zhang. Minority Games: Interacting Agents in Financial Market[M]. Oxford University Press, 2004.
  • 9Fernandez. Risk management under extreme events[J]. International Review of Financial Analysis, 2005, 14:113--148.
  • 10Wagner, N. , Marsh, T.. Measuring tail thickness under GARCH and an application to extreme exchange rate change[J]. Journal of Empirical Finance, 2005,12:165 --185.

共引文献83

同被引文献72

引证文献12

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部