期刊文献+

Development of a Remotely Controlled Testing Platform with Low-drag Air-ventilated Hull 被引量:2

Development of a Remotely Controlled Testing Platform with Low-drag Air-ventilated Hull
下载PDF
导出
摘要 这份报纸探讨发展并且有创新的通气空气的壳的一个遥远地控制的船平台严峻。轮船壳的下侧上的空气洞的申请是一答应为减少水动力学的工具拖和污染物质排出物和增加的海洋的交通效率。尽管有这个概念潜力,设计优化和新奇空气洞轮船的高效的操作仍然是一个挑战性的问题。赫尔建设和模型规模空气洞船的传感器乐器学在纸被描述。壳的模块化的结构允许容易的修正,和一个电的推进单位启用自己推动的操作。船经由一个收音机传播系统遥远地被控制。起始的测试的结果被报导,包括在几的戳,速度,和气流率装载条件。构造平台能被用于优化空气洞系统并且测试另外的创新的壳图案。这个系统能也被开发进一只高效的无人的船。 This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.
出处 《Journal of Marine Science and Application》 CSCD 2015年第1期25-29,共5页 船舶与海洋工程学报(英文版)
基金 Foundation item: Supported by the National Science Foundation (CMMI-1026264 and EEC-1157094).
关键词 测试平台 远程控制 低阻力 通风 空气 开发 船体结构 传输系统 air-cavity ship air-ventilated hull remotely controlled testing platform drag reduction hull construction unmanned surface vehicle
  • 相关文献

参考文献13

  • 1Amromin EL, Metcalf B, Karafiath G (2011). Synergy of resistance reduction effects for a ship with bottom air cavity. Journal of Fluids Engineering, 133(2), 021302.1-021302.7. DOI: 10.1115/1.4003422.
  • 2Basin A, Butuzov A, Ivanov A, Olenin Y, Petrov V, Potapov O, Ratner E, Starobinsky V, Eller A (1969). Operational tests of a cargo ship 'XV VLKSM Congress' with air injection under a bottom. River Transport, 52-53. (in Russian).
  • 3Ceccio SL (2010). Friction drag reduction of external flows with bubble and gas injection. Annual Review of Fluid Mechanics, 42, 183-203. DOI: 10.1146/annurev-fluid-121108-145504.
  • 4Elbing BR, Makiharju S, Wiggins A, Perlin M, Dowling DR, Ceccio SL (2013). On the scaling of air layer.drag reduction. Journal of Fluid Mechanics, 717, 484-513. DOI: 10.1017/jfm.2013.387.
  • 5Jang J, Choi SH, Ahn S-M, Kim B, Seo JS (2014). Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship. International Journal of Naval Architecture and Ocean Engineering, 6(2), 363-379. DOI: 10.2478/ijnaoe-2013-0185.
  • 6Latorre R (1997). Ship hull drag reduction using bottom air injection. Ocean Engineering, 24(2), 161-175. DOI: 10.1016/0029-8018(96)00005-4.
  • 7M~kiharju SA, Elbing BR, Wiggins A, Schinasi S, Vanden-Broeck J-M, Dowling DR, Perlin M, Ceccio SL (2013). On the scaling of air entrainment from a ventilated partial cavity. Journal of Fluid Mechanics, 732, 47-76. DOI: 10.1017/jfm.2013.387.
  • 8Manley JE (2008). Unmanned surface vehicles, 15 years of development. OCEANS'08, Quebec City, Canada, 1-4.
  • 9Matveev KI (2005). Application of artificial cavitation for reducing ship drag. Oceanic Engineering International, 9( 1 ), 35 -41.
  • 10Matveev KI, Duncan R, Winkler J (2006). Acoustic, dynamic, and hydrodynamic aspects of air-lubricated hulls. Proceedings of the Undersea Defense Technology ConJerence, San Diego, USA, 1-8.

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部